

Socio-Technical Trust: An Architectural Approach

Amit K. Chopra, **Elda Paja**, Paolo Giorgini

Università degli Studi di Trento

31 October 2011

Outline

- Socio-technical systems (STS)
 - Specification
- Engineering STS for trust
 - Objectives and challenges
- Our approach
 - Socio-technical trust
 - Computational grounding
 - More trustworthy STS
- Case study: The Food Domain
- Conclusions and future work

Socio–Technical System

 An interplay of humans, organizations and their technical systems

STS Specification

- In terms of actors and their interactions
 - Dependency captures social reliance
 - **But**, actors are mutually independent

Proposal

- Socio-technical trust: fundamental social relationship among actors of an STS
 - **STS** are organized along trust relationships

Running example

5

Running example

Existing Trust Approaches

Cognitive Trust

 Each agent has its own mental model of others

Technical Trust

Assurance, or dependability

Socio-Technical Trust

- Encode trust relationships into the architecture of the STS
 - Irrespective of individual participants
 - Architectural trust (T_A)
- Specification:
 - STS: a set of roles and the trust relation
 - Formally: $S \subseteq R \times R \times P \times P$
 - ► We say: $T_A(x,y,p,q)$ iff $(x,y,p,q) \in S$
- Example: HealthcareSystem
 - roles: Hospital, Lab, Doctor, Patient
 - T_A(Patient, Hospital, takeTest, receiveAccurateResults)

Objectives and challenges

Engineer STS for trust

Ensure robust interaction: provide means to guarantee a purposeful and effective interaction between actors, to ensure the overall objectives are achieved

• **Compare STS**: What is the most appropriate STS for me?

Role-oriented perspective

Computational Grounding

- Commitment-based approach
 - Commitments model interactions between participants in terms of a contractual relation
 - Formally: C(debtor,creditor,antecendet,consequent)

- Why commitments?
 - Obtain a more robust system: Robust Interaction
 - Whenever C(Lab, Patient, paid A took Test, results Delivered)
 - \Box T_A(Patient,Lab,paid \land tookTest,resultsDelivered)

More trustworthy

- Intuition: more robust
 - Commitments alone are not enough: we need mechanisms to support them
- Trust supporting mechanisms
 - Some trust relationships influence positively other trust relationships with respect to a given role's perspective
- Formally: $T(x,y,p,q) \succ_x T(x,y,r,s)$
 - Supports relation: Handle exceptions that might arise from existing trust relations

• Examples

- If results are not delivered, provide a coupon for redoing/repeating the tests without paying again
 - Compensate

T(patient,lab,violated(patient,lab,paid,delivered),refund \land discountCoupon)

If results are not delivered, money is reimbursed (payment is undone)

Undo

T(patient,lab,undo(delivered),T(patient,lab,undelivered,undo(paid))

If the hospital cannot prepare test results, can transfer the responsibility to a lab

Delegate

T(patient,hospital,threatened(patient,hospital,paid,delivered), T(patient,lab,paid,delivered))

Trust supporting mechanisms

Name	Trust Encoding
Compensate(x,y,p,q,r,s)	T(x,y,violated(x,y,p,q),T(x,y,r,s))
Delegation(x,y,z,p,q)	T(x,y,threatened(x,y,p,q),T(x,z,p,q))
Undo(x,y,p,q,r)	T(x,y,undo(q),T(x,y,r,undo(p)))

Abstracted from the basic operations performed on commitments

More trustworthy: compare STSs

- $T_1 = T(Patient, Lab, paid \land tookTest, resultsDelivered)$
- $T_2=T(Patient, Lab, threatened(T_1), T(Patient, Hospital, paid \land tookTest, resultsDelivered))$

$$S_{1} = \{T_{1}\}, S_{2} = \{T_{1}, T_{2}\}$$

$$T_{2} \succ_{Patient} T_{1} \Rightarrow S_{2} \rangle\rangle_{Patient} S_{1}$$

$$S_{2} \text{ more trustworthy than } S_{1}$$

Case Study: The Food Domain

- Information on food, food safety, and nutrition
- Information for consumers
 - Information about food and nutrition
- Information for food business operators
 - > Producers, manufacturers, regulators, retailers, etc.
 - Information about regulations and law
 - Guidance to regulatory requirements

Case Study: The Food Domain

- Domain analysis
 - Identify domain specific information
 - New domain-specific supports relations

Identify roles

- Producers, manufacturers, regulators, and consumers
- Grouped into: Food business operator (FBO), Consumer (C)
- Identify trust relationships
- Apply trust supporting mechanisms
 - Domain-specific trust supporting mechanisms

Case study: Food Safety

Enhance consumers' trust about food safety in the food domain

Discussion

Conclusions

- Socio-technical trust is grounded in architecture
- Key feature: the roleoriented perspective
- It is different from cognitive and technical trust
- Understanding the structure of a system proved valuable for prospective participants

Future Work

- Extend the list of trust supporting mechanisms and explore their formal semantics
- Better understand STSs and analyze them
- Evaluate with other Case
 Studies

Elda Paja

paja@disi.unitn.it

31 October 2011

