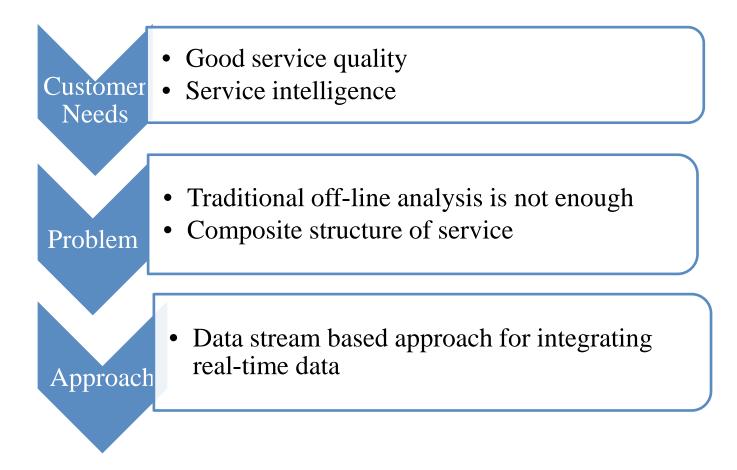
Real-Time Integration of Service Instances From Distributed Data Streams

Feng-Lin Li ICT School, University of Trento, Italy maillifenglin@gmail.com



Outline

Problems and Approaches

Experiments Validation

Conclusion and Future Work

Service

Service is a set of capabilities as well as their functional context. The capabilities suitable for invocation are expressed via a published service contract (API)

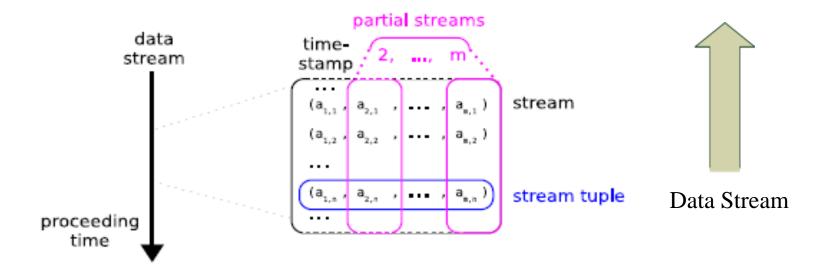
Service Intelligence

- Service Recommendation
- Service Trust
- Service Requirement
- Service Management

Service Level Agreement

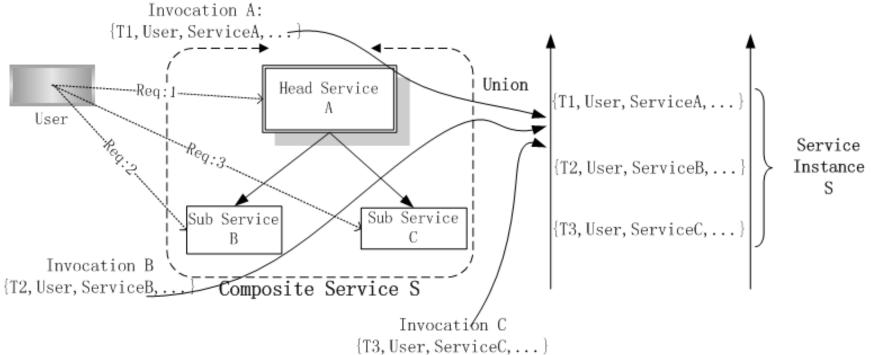
>A set of Quality of Service (QoS) a provider guarantees

Response time

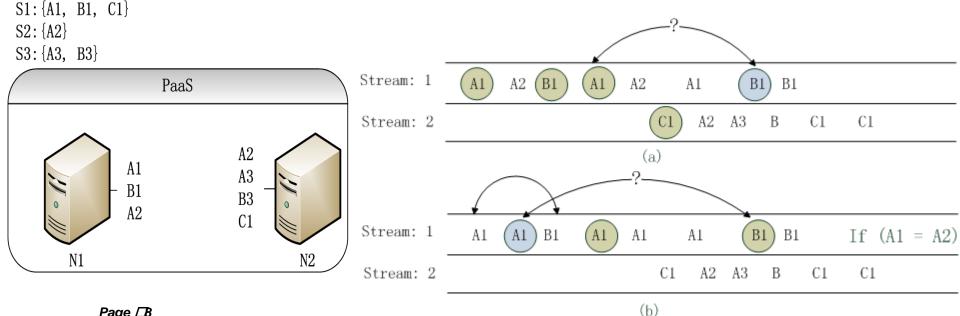

- Through output
- Delay
- Usage
- Pricing

Compliance

The conformity degree between runtime measurements and guaranteed quality on those indicators in the SLA


Data Stream

- Schema
- > A sequence of infinite data tuples
- Continuous query


Composite Structure of Service

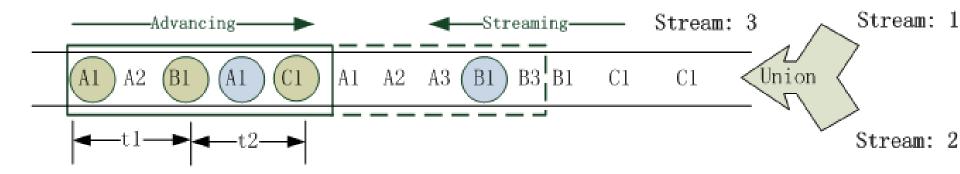
- Atomic and Composite Service
- Invocation Tuples and Service Instance
- Service Degree

Associating Distributed Data Tuples

- \triangleright Supposing that a set of services : {S1, S2, S3}, S1 includes A1, B1 and C1; S2 includes only A2; S3 includes A3 and B3
- \triangleright Each Service (S1, S2, S3) could be requested multiple times
- > A component service (A1, B1 ... B3) could belong to multi-service

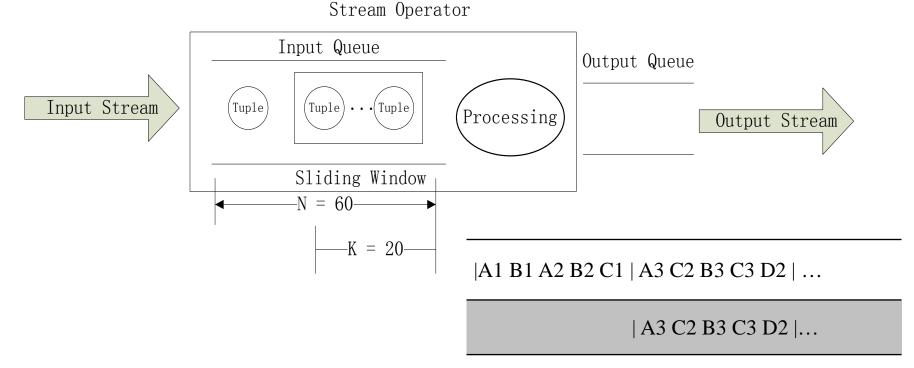
Association Strategies

- Service Structure + Client Information (IP)
- Service Structure + Runtime Status Information (Timestamp)
- Service Structure + Client Information (IP) + Runtime Status Information (Timestamp)


Requested	Head Service	Invocation	Client	Other
Service	Head Service	Timestamp	Information	Information
В	А	2010-8-9	192.168.10.28	
		17:11:29	192.108.10.28	•••
В	٨	2010-8-9	192.168.10.111	
	A	17:11:37		•••
В	А	2010-8-9	192.168.10.111	
		17:11:29		•••

Quantitative Analysis

Strategies	Head + IP + Time	Head	Head + Time	Head + IP
Recall	100%	91.3053%	99.3141%	99.9857%
Accuracy	100%	85.1683%	98.6283%	99.9786%
Error rate	0%	6.1370%	0.6859%	7.14e-3%


Integration Completeness

- > To integrate service instance of S1, we need to collect A1, B1, C1
- For counting window, if the window size is 5, A1 will get lost; if the size if 6 or other number, it will lose other tuples

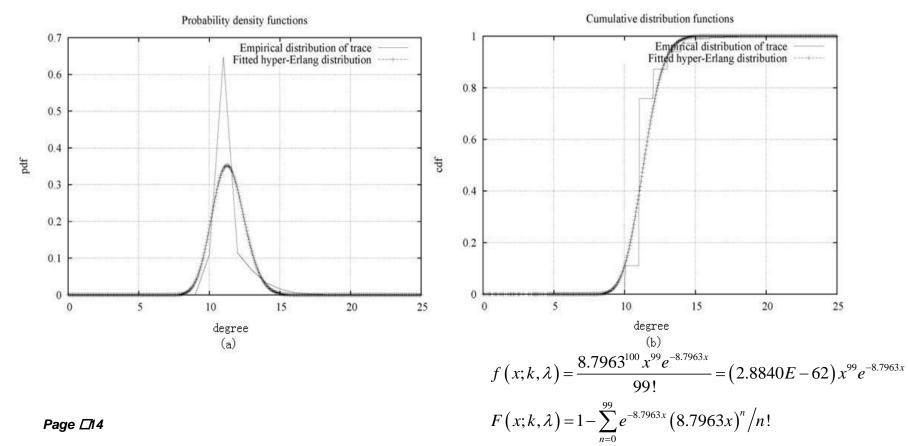
Traditional Sliding Window

- > Partition on data streams and store in the buffer
- If the buffer full, stream operator will perform grouping according to their key and compute respectively

Small Window Array

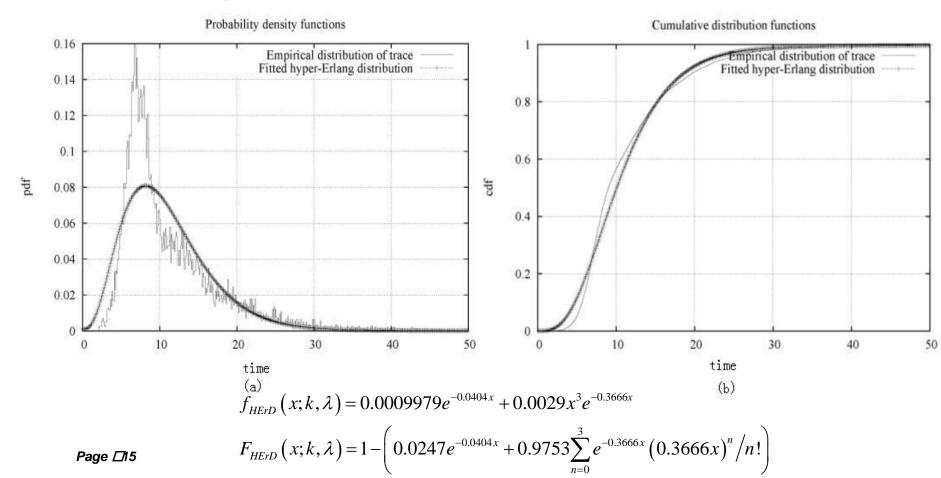
- > A mapping: MAP <Key, Small-Window>
- > A tuple for one invocation and one small window for a service instance
- For a key in the tuple, if there is no such key in the system, it will open a new window for the key
- > If the key exists in the system, the tuple will be inserted into the window
- > A small window will close when it is full or timeout happens

```
A1 B1 A2 B2 C1 A3 C2 B3 C3 D2 ...


|A1 B1 C1 |...

|A2 B2 C2 D2 | ...

|A3 B3 C3 | ...
```


The Size of Counting Window

Service degree's Probability Distribution Function *f*(n) and Cumulative Distribution Function *F*(n)

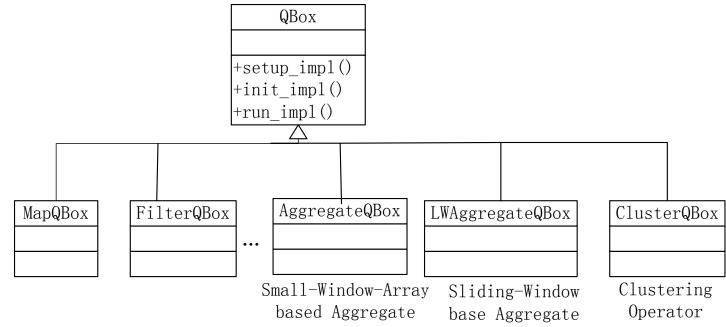
Timeout Settings

> Service response time distribution PDF f(t) and CDF F(t)

Comparison of Window Mechanism

Window Size / Advance Step / Timeout

	Small Window Array		Sliding Windo	W
Parameters	13/13/22	4000/4000	8000/8000	16000/16000
Instance Completeness (=1)	80.4815%	1.66464%	13.1457%	43.4379%
(r=0.75)	91.6553%	2.8363%	16.9894%	47.6316%
(r=0.85)	90.2979%	2.2719%	15.1675%	45.8741%
Invocation Completeness	94.0649%	22.0332%	40.1617%	63.1543%


Experiments Validation

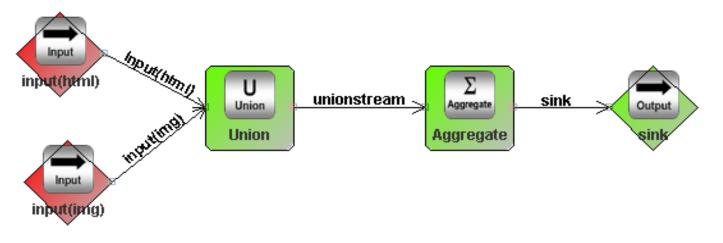
Theoretical Foundation

Queuing Theory Model

Experiment Platform

BOREALIS, a data stream management system by Brandies, Brown and MIT

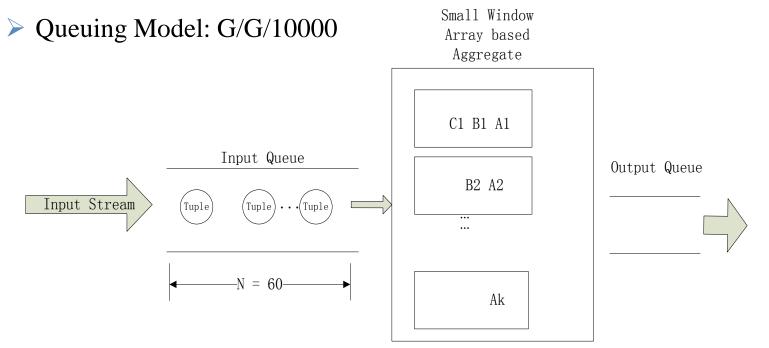
Experiments Validation


Streaming Processing Strategy

- ➢ Join → Aggregate (Expensive and Inefficient)
- ➢ Union ➔ Aggregate

Experiment Data

> A web page is similar with a composite service


English Wiki / Amazon access log

xperiments Validation

Small Window Array based Aggregate

- > Input: a 2-stage PH distribution with average interval 9.7780 ms
- Service time is a general distribution with average of avg = 18.9749s and stand deviation of *delta* = 5.5068

Experiments Validation

Performance Analysis

- The deviation of processing time is 9.04%, that of tuples number is 12.0251%
- Using the input distribution observed from the receiver, the deviation will be 9.04% and 5.6989% respectively

Prediction:				
Total Tuples	2119.2972	Waiting Tuples	3.1560E-53	
Residence Time	20.7137	Waiting Time	0	
Probability	7.9272E-05	Probability of	0	
of Wait	1.9212E-03	Being Dropped	0	
Observation:				
Total Tuples	1860.6358	Deviation	12.0251%	
Residence Time	19.0129	Deviation	9.0402%	

Experiments Validation

Comparison between the two Window Mechanisms

- Window Size / Advance Step / Timeout
- Service Structure + Client Information (IP) + Instance Status (Timestamp)

Indicators	Small Window Array	Sliding Widnow
Window Parameters	13/13/22	32000/32000/-
Completeness $= 1$	80.4815%	72.1083%
Completeness = 0.85	90.2979%	73.7587%
Completeness = 0.75	91.6553%	74.7302%
$0 < \text{Completeness} \le 1$	94.0649%	76.2744%
Average Tuple Numbers	1861(window)	15374(tuple)
Average Storage	3.1148MB	5.2909MB
Average Residence Time	19.0192(S)	16.8402(S)

Conclusion and Future Work

Conclusion

- > Accuracy: systematic association strategies
- > Completeness: small-window-array, statistical distribution
- > Performance Evaluation: queuing theory model

Future Work

- > Tradeoff between the completeness and the performance
- > Queuing Model for Join operation
- Queuing Network (e.g. Jackson network) on Performance analysis (cost model) for Streaming Operator
- > Data Stream Algorithm: clustering

Thanks! ©