Aligning Service-Oriented Architectures
with Security Requirements

Mattia Salnitri Fabiano Dalpiaz Paolo Giorgini

Software Evolution

- It affects all software systems

- From a software engineering perspective what may
evolve are:
- Software architectures:
- due to technical changes (e.g.: a component is dismissed);
- due to technical prerequisites (e.g.: new version of the O.S.).
- Software requirements:

- The needs of the Stakeholders may change;
- Laws and norms may change.

Requirement-Architecture Alignment

- Evolution may lead architecture and requirements to
diverge.

- If they are not aligned, it means the requirements are not
fulfilled

- The system does not do what it is expected to do!

- Keeping an architecture aligned with requirements is a
key process in the era of (software) evolution

Security requirements...

- We focus on security requirements
- If violated they have severe consequences
- Law compliance
- Loss of money
- Examples

- Integrity : Ensuring that information is not accessed by unauthorized
persons [1]

- Confidentiality : Ensuring that information is not altered by unauthorized
persons in a way that is not detectable by authorized users [1]

- We model security requirements with commitments
- Using STS-ml approach [2]

Security requirements models (STS-ml

Notify
government
parties

Contract

Notify N
governmem N
parties

\
\
\

Archive contracts }"
/

/

Contract

Contract

% Contract \ LU Contract
. / \\ guee ~ information |
M L \ Contract FEE—ie —
S \\ __/" ~
\ e
o 0 ’—‘—‘_’—-/__/’
M . o Contract information M
Contract
| information | =]

Municipality

Verify plot of land

Contract information

Notify government parties Municipality

Archive contracts

Security requirements specification (SRS)

Security requirements:

C(eGov application, Seller, D=delegation(Seller, eGov application, Government
notified), non-rep(D))

C(e-Gov application, Seller, T, non-disc(Municipal approval A Sale information))
C(Municipality, Seller, T, non-discl(Sale information))

Knowledge base:

part-of(Land details, Sale information)
part-of(Price, Sale information)

tangible-by(Sale information, Official contract)
tangible-by(Sale information, Contract draft)

owns(Seller, Sale information)

...and Service Oriented Architectures

- Service Oriented Architectures
- Services provide functionalities to third parties
- Evolution is intrinsic in services

- Service compositions
- Used to describe the architecture of a set of interrelated services
- Modelled as business process models(BPMN)

Service composition (eGov scenario)

(Athens REA] . V1 . [Athens Munic.] V2 _ [Athens REA) [Athens REA]

0 |

[Athens REA]

aﬁm‘ =

leGov] ¢ :

‘ H

Requirement-Architecture Alignment

Self-recom- Analyst Privacy law
 position relaxes reqs revised
|

SR, SR; '

o0

Re-design

Requirements | SR, '

Alignment?

Architecture ' BP, '

Time >

O

BP;

Objectives

- Define a methodological approach which permits the
analyst to check the compliance (alignment) between
security requirements and service composition

- Define the conceptual mapping between security requirements
elements and service composition elements

- Automated algorithms to check compliance

Conceptual mapping

BPMN Element STS-ml Element

Participant IS-a Actor
Activity relates-to Goal

Variable (Data object) represents Information

L
Methodological framework

A TT—
irements
Requirements

Specification(SRS)

N\
[evolution]
Business R/Aconceptual instantiated
Process(BP) Mapping(CM) SRS(ISRS) \

:: W
@ [yes]

Eventtype Next event

Q Aligned?
Redesi
[composition ends] comp [no]
®)

Needed revisions

Revise

Example: Non-disclosure

- Suppose to check the security requirement:
- C1:C(eGov application, Seller, T, non-disc(Sale information))

- With the business process described above

Example: Non-disclosure

eGov IS-A eGov application
Storage IS-A eGov application
Athens REA IS-A Seller

V1 Represents Sale information
V3 Represents Sale information

* C1isinstantiated in

1.1:C(eGov, Athens REA, T, non-discl(V1))

eGov, Athens REA, T, non-discl(V3))

2.C(
1.3:C(Storage, Athens REA, T, non-discl(V1))
4:C(

Storage, Athens REA, T, non-discl(V3))

Example: Non-disclosure

Algorithm 4 Non-Disclosure Verification

VERIFYND(C(deb, cred, T, non-discl(var)), BP, SRS, CM)
actByDeb < BP.ACTIVITIESBY/(deb)

actByCred < BP.ACTIVITIESBY(cred)
actUsingVar <— BP.ACTIVITIESUSING (var)
doc + CM.SEARCH(represents(var, *))
if doc # null
then info < SRS.SEARCH(tangible-by(*, doc)) - Y/N
for each i € info
do own < SRS.SEARCH(owns(*, i)
actByOwner.ADD(BP.ACTIVITIESBY (own))

10 actByOthers <+ actUsingVar \ actByDeb \ actByCred \ actByOwner
11 for each a; € actByDeb

12 do for each a; € actByOthers

13 do if var € output(a;) N input(a;)

14 then return non-compliant

. 15 return compliant

Mapping -

Lo A W —

Example: Non-disclosure

(AthensREA] . V1 . [Athens Munic.] V2 [Athens REA] [Athens REA|

o E] v =]y

|Greek ministry

w = q. ‘
o ¢ @H -

C1.2:C(eGov, Athens REA, T, non-discl(V3))

[Athens REA)]

Conclusions & future works

- We have proposed:

- a methodological approach to check alignment between security
requirements and service compositions in an evolutionary system

- Future works

- Implementation (Aniketos)
- Extension of supported Security requirements

THANK YOU

Questions?

References

http://www.albion.com/security/intro-4.html

2. F. Dalpiaz, E. Paja and P. Giorgini, “Security
requirements engineering via commitments” in Proc of
STAST 11, 2001

