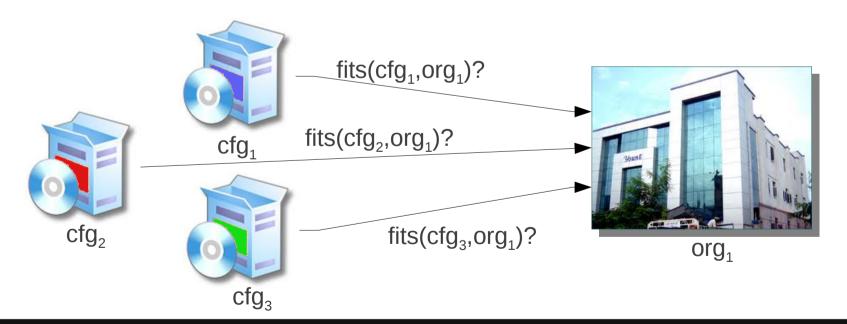
Aligning Software Configuration with Business and IT Context

Fabiano Dalpiaz¹, Raian Ali², Paolo Giorgini¹

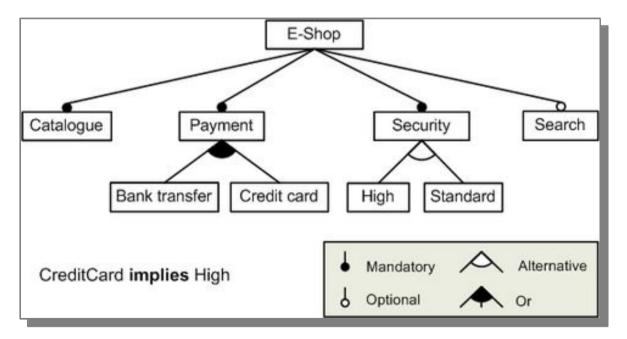
¹University of Trento, Italy ²Bournemouth University, U.K.

dalpiaz@disi.unitn.it

May 24, 2012

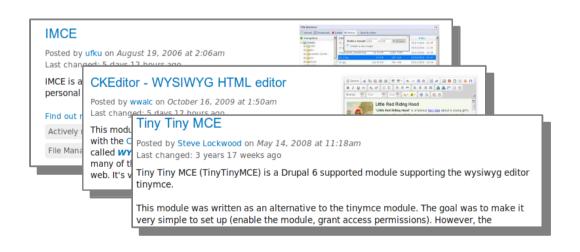

Business/IT Alignment

- B/IT Alignment holds when Information Technology (IT) is effectively used to achieve Business (B) objectives
- Achieving and maintaining B/IT Alignment is hard, as it requires joint effort of IT administrators and business managers
 - Cultural gap
 - Mutual impact between B and IT
 - Dynamism of organizations
- Explored both in business/management and in software/information systems


SW Configuration and B/IT Alignment

- Proper configuration of a software system is an essential activity towards B/IT Alignment
 - Does the system fit well with the business objectives?
 - Does the system fit well with the existing technical systems?
- Existing approaches heavily rely on the skills of the analysts

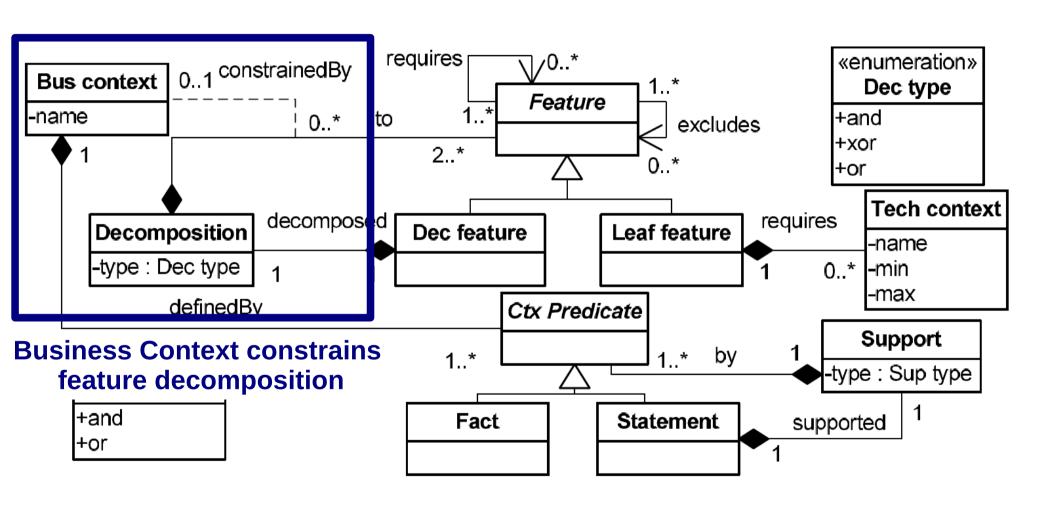
Baseline: Feature Models

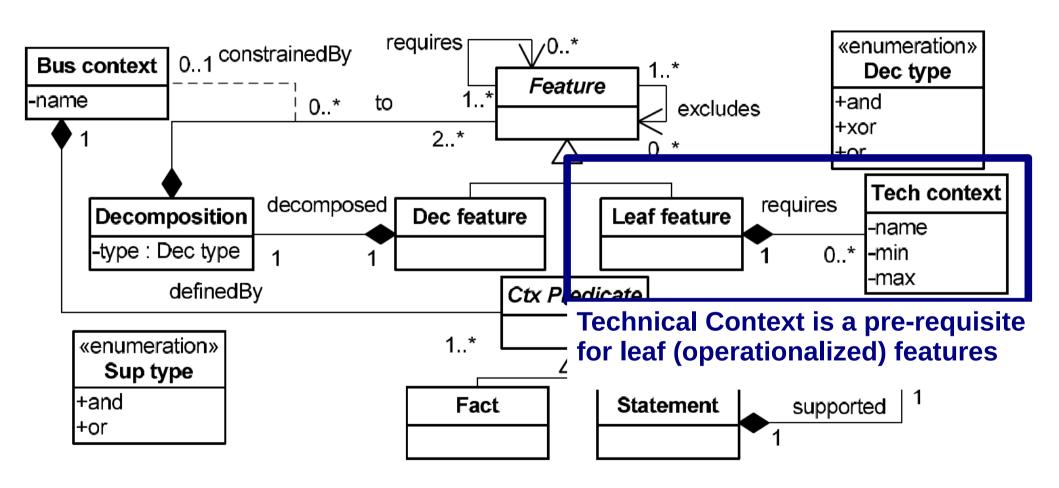

- Feature models are a compact representation of the products (configurations) in a software product line
 - Idea: one customizable software, multiple configurations
 - Configurations differ in the features they consist of

[Kang90]

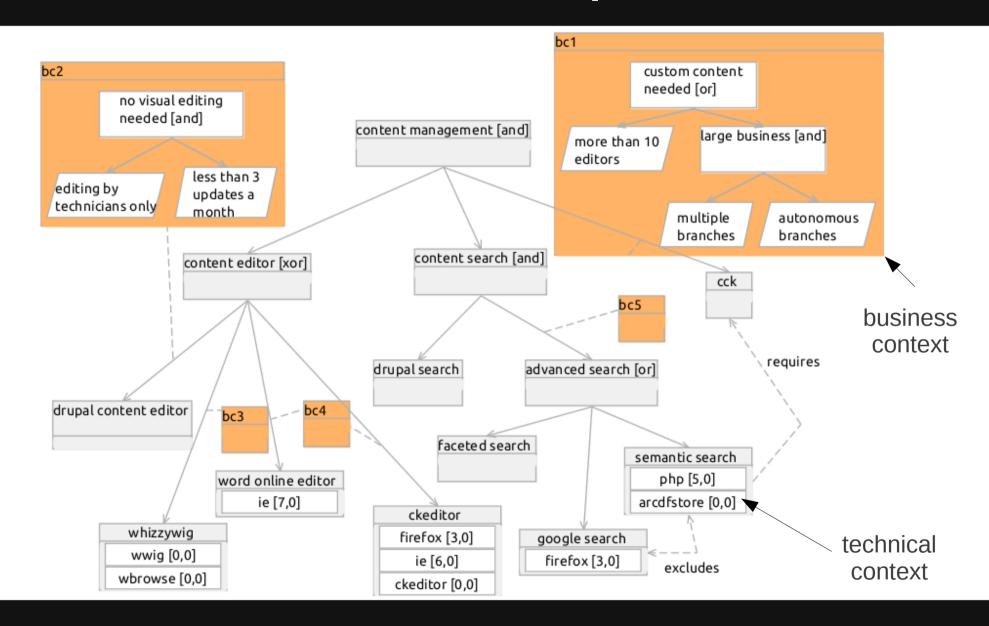
Motivating Scenario: Drupal

- Drupal is an open-source content management system
 - Wide industrial adoption. Several web development companies base their products upon a Drupal-based product line
 - over 13.000 modules are available for use
- Challenge: pick a configuration of Drupal which is aligned with the business and technical context of a client organization

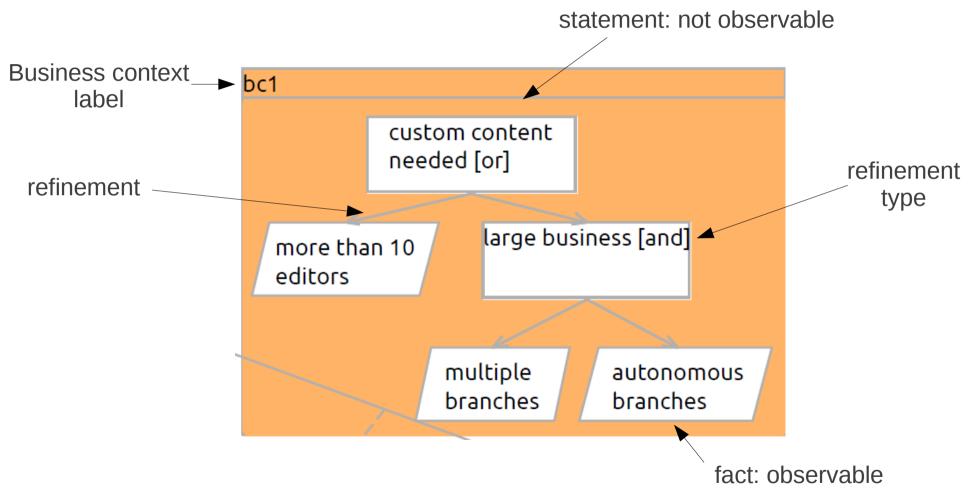



Contextual Feature Models (CFMs): Outline

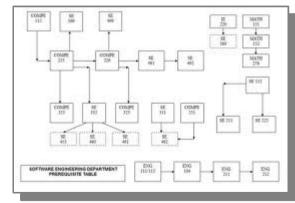
- Features are not always advisable / applicable
 - In traditional feature models, such information is implicit
 - We want to make such information explicit
- Two types of context:
 - Business context affects feature advisability
 - "customer has a vast catalog", "most clients are SMEs", "branches in multiple countries exist", ...
 - **Technical context** affects feature applicability (pre-requisites)
 - "mySql version 5 is available", "Linux-based server", "Chrome version 4+", ...


CFMs: meta-model

CFMs: meta-model



CFMs: an Example


Specifying Business Contexts

We adapt context analysis [Ali10]

Specifying Technical Contexts

- Each technical context is characterized by
 - Name
 - Minimum value (0 = no lower bound)
 - Maximum value (-1 = no upper bound)
- Min/Max values can be used to refer to version numbers
 - The formalism has to be enriched to specify more expressive prerequisites

Reasoning with CFMs: Formal Framework

Definition 1 (Configuration). Given BC and TC, a set of features $\{f_1, \ldots, f_n\}$ is a configuration CFG for \mathcal{M} with respect to BC and TC, formally CFG $\vdash_{\mathsf{BC},\mathsf{TC}}$ \mathcal{M} , if and only if $\mathsf{root}(\mathcal{M}) \in \mathsf{CFG}$ and (1-4) hold $\forall \mathsf{f}' \in \mathsf{CFG}$:

- 1. $\operatorname{dec}(f', D = \{\langle f_1, bc_1 \rangle, \ldots, \langle f_n, bc_n \rangle\}, \operatorname{type}) \rightarrow \exists \langle f_j, bc_j \rangle \in D : \neg \operatorname{support}(BC, bc_j) \land f_j \in \operatorname{CFG}, and \\ \operatorname{type} = \operatorname{and} : (\exists \ 1 \le k \le n : f_k \in \operatorname{CFG}) \land (\forall \langle f_i, bc_i \rangle \in D : \operatorname{support}(BC, bc_i) \land f_i \in \operatorname{CFG}) \\ \operatorname{type} = \operatorname{or} : \exists \langle f_i, bc_i \rangle \in D : \operatorname{support}(BC, bc_i) \land f_i \in \operatorname{CFG} \\ \operatorname{type} = \operatorname{xor} : \exists \ ! \langle f_i, bc_i \rangle \in D : \operatorname{support}(BC, bc_i) \land f_i \in \operatorname{CFG} \\ 2. \ \forall f'' : \operatorname{requires}(f', f'') \rightarrow f'' \notin \operatorname{CFG} \\ 3. \ \forall f'' : \operatorname{excludes}(f', f'') \rightarrow f'' \notin \operatorname{CFG} \\ 4. \ \operatorname{is-leaf}(f') \rightarrow \forall \langle \operatorname{tcname}, \min, \max \rangle \in \operatorname{techctx}(f') \\ \exists \langle \operatorname{tcname}, \min', \max' \rangle \in \operatorname{TC} : \min' \ge \min \land \max \rangle = 10$
 - 1

Semantics for a configuration

Intuitively, a set of features that support the top-level feature, given a technical and a business context

Formal framework for automated reasoning in disjunctive datalog

active(F):- anddecomposed(F), 0=#count(Fi: dec(F,Fi,Ca), holds(Ca), -active(Fi)) not noExtraAct(F), dec(F,Fj,Cb), active(Fj), holds(Cb). 2 noExtraAct(F) :- dec(F,Fi,Ca), active(Fi), not holds(Ca). active(F):- ordecomposed(F), dec(F,Fi,Ca), active(Fi), holds(Ca), not noExtraAct(F). active(F):- xordecomposed(F), dec(F,Fi,Ca), holds(Ca), active(Fi), not actdiff(F,Fi). $actdiff(F,Fi) := xordecomposed(F), active(Fi), dec(F,Fi,_), dec(F,Fi,_), active(Fi),$ Fi!=Fi. 6 -active(Fi) :- requires(Fi,Fi), -active(Fi). 7 -active(Fi) v -active(Fi) :- excludes(Fi,Fi). 8 -active(X):- anddecomposed(X), not active(X). -active(X): ordecomposed(X), not active(X). 10 - active(X) := xordecomposed(X), not active(X).11 -active(Y) :- dec(X,Y,C), -active(X). 12 holds(TC) :- tc(_,TC), not noPartInactive(TC). 13 noPartInactive(TC):- tcpart(TC,P,Vmin,Vmax), not istrue(P,Vmin,Vmax). 14 holds(BC):- anddec(BC), not subUnsat(BC). 15 subUnsat(BC) :- fdec(BC,SUB), not holds(SUB). 16 holds(BC):- ordec(BC), fdec(BC,SUB), holds(SUB). 17 active(X) v -active(X) :- f(X), tc(X,C), holds(C). 18 $active(X) \ v - active(X) := f(X), 0 = \sharp count\{C: tc(X,C)\}.$ 19 -active(X) :- f(X), tc(X,C), not holds(C). 20 $f(X) := dec(_,X,_), 0=\sharp count\{Z: dec(X,Z,_)\}.$ $21 \operatorname{act}(X) := \operatorname{active}(X), f(X).$ 22 bc(X) :- dec(_,_,X). 23 tch(X) :- tc(_,X), holds(X). 24 $bch(X) := dec(_,_,X)$, holds(X), X!=true. 25 holds(true).

Reasoning Techniques: Overview

Configurations generation

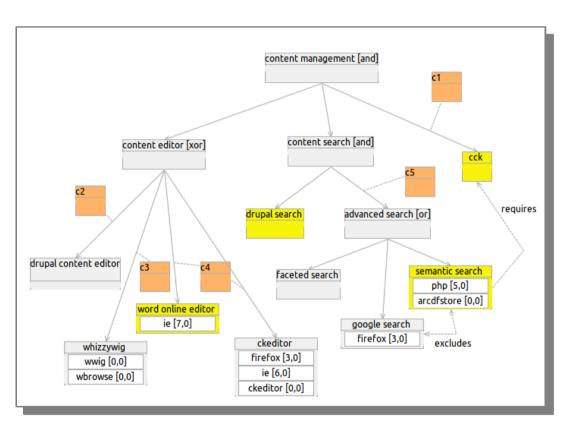
Given business and technical contexts, generate all configurations

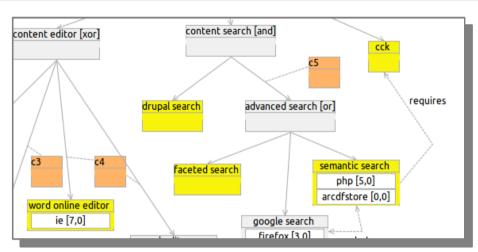
Business to IT alignment

- Given a bus. context, which configurations / technical contexts?
- Variants: high-variability product, minimal technical pre-requisites

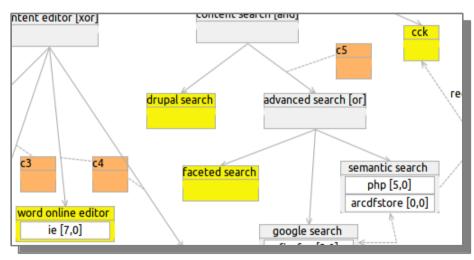
IT to Business alignment

- Given a tech. context, which configurations / business contexts?
- Variant: maximize business context support (preferences)


The reasoning framework in Datalog supports these analyses


Configurations Generation

- Return all configurations that fit with a given technical context TC and a given business context BC
- Company α needs a deployment of our Drupal product line
 - TC: α supports Internet Explorer v≥8, php v5, arcdfstore
 - BC: α needs advanced visual editing (bc4), has large catalog (bc5), and has more than 10 website editors
 - Three configurations exist
 - 1. cck, drupal search, word online editor, semantic search
 - 2. cck, drupal search, faceted search, word online editor, semantic search
 - 3. cck, drupal search, faceted search, word online editor


Configurations Generation

Configuration 1

Configuration 2

Configuration 3

Business to IT Alignment

- Given BC, return all possible couples (Configuration, TC)
 - i.e., which IT fits well with the given business context?
 - IT includes a configuration of the feature model as well as the technical pre-requisites for the selected features

 Via context analysis, company β has identified facts supporting contexts bc4 (advanced editing features) and bc5 (vast product

catalog)

Feature / Tech context	S1	S2	S3	S4	S5	S6
f1 = drupal search	✓	✓	✓	✓	✓	✓
f2 = google search	\checkmark	×	\checkmark	×	\checkmark	\checkmark
f3 = faceted search	\checkmark	\checkmark	\checkmark	\checkmark	×	×
f4 = word online editor	\checkmark	\checkmark	×	×	\checkmark	×
f5 = ckeditor	×	×	✓	✓	×	✓
tc1 = firefox	≥ 3	×	≥ 3	≥ 3	≥ 3	≥ 3
tc2 = ckeditor	×	×	\checkmark	\checkmark	×	✓
tc1 = ie	≥ 7	≥ 7	×	≥ 6	≥ 7	≥ 6

High-Variability Configuration

- Given BC, find the minimal set of TCs that enables the deployment of a high-variability product
 - i.e., a product including all possible configurations for BC
 - + possibility to switch from one configuration to another
 - more costly
- Take company β, who wants to support bc4 and bc5

Feature / Tech context	S1	S2	S3	S4	S5	S6	
f1 = drupal search	√	√	√	√	√	✓	
f2 = google search	✓	×	✓	×	✓	✓	
f3 = faceted search	✓	✓	✓	✓	×	×	Minimal set of TC
f4 = word online editor	✓	\checkmark	×	×	✓	×	- firefox 3+
f5 = ckeditor	×	×	\checkmark	\checkmark	×	\checkmark	- ckeditor
tc1 = firefox	≥3	×	≥3	≥3	≥3	≥3	- ie 7+
tc2 = ckeditor	×	×	✓	✓	×	✓	15.1
tc1 = ie	≥ 7	≥ 7	×	≥ 6	≥ 7	≥ 6	

Core Technical Infrastructure

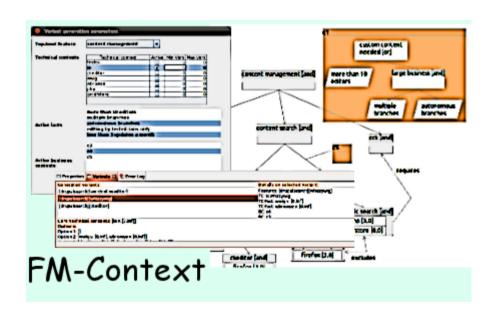
- Given BC, which is the core technical infrastructure that enables the deployment of at least one configuration?
 - Core set: if any element is removed from it, no configuration can be deployed
 - Multiple of such core technical infrastructures may exists
- Take company β, as before

Feature / Tech context	S1	S2	S3	S4	S5	S6]	
f1 = drupal search	✓	√	✓	✓	✓	✓]	Core TC set 1:
f2 = google search	\checkmark	×	\checkmark	×	\checkmark	\checkmark		- ie 7+
f3 = faceted search	\checkmark	\checkmark	\checkmark	\checkmark	×	×		
f4 = word online editor	✓	\checkmark	×	×	\checkmark	×		Core TC set 2:
f5 = ckeditor	×	×	\checkmark	\checkmark	×	\checkmark		- firefox 3+
tc1 = firefox	≥ 3	×	≥ 3	≥ 3	≥ 3	≥3		- ckeditor
tc2 = ckeditor	×	×	\checkmark	\checkmark	×	\checkmark		- ie 6+
tc1 = ie	≥ 7	≥ 7	×	≥ 6	≥ 7	≥ 6		10 0 .

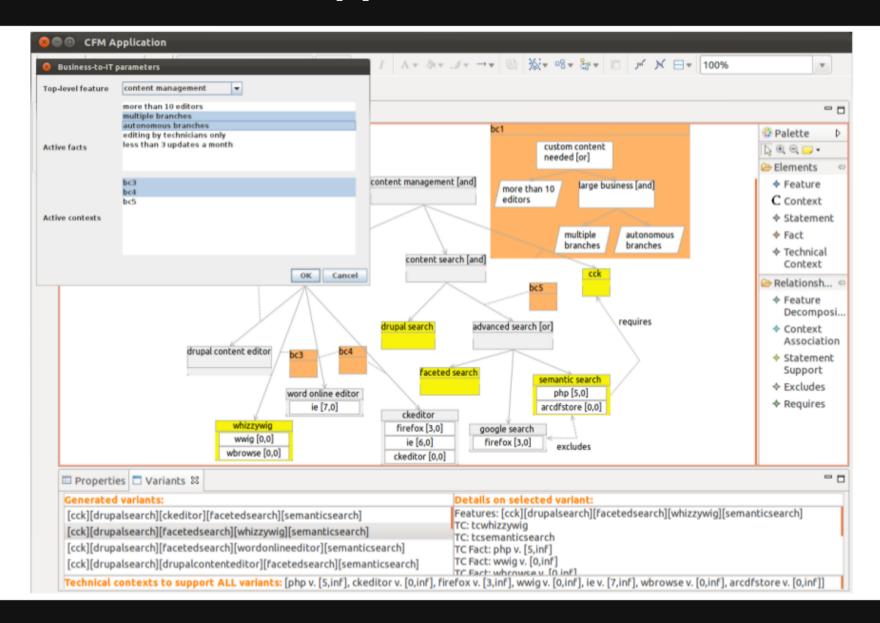
IT to Business Alignment

- Given TC, return all possible couples (Configuration, BC)
 - The company wants not to change its IT component
- Company γ has many customers with legacy browsers. Thus, it cannot afford changing the IT requirements. Its infrastructure supports only php v5 and arcdfstore
 - Six solutions exist

Feature / Business context	S1	S2	S3	S4	S5	S6
f1 = drupal search	✓	✓	✓	√	✓	✓
f2 = drupal content editor	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
f3 = faceted search	×	\checkmark	\checkmark	×	\checkmark	×
f4 = cck	×	×	\checkmark	\checkmark	\checkmark	✓
f5 = semantic search	×	×	\checkmark	\checkmark	×	×
bc1 = custom content needed	×	×	✓	√	✓	✓
bc2 = no visual editing needed	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
bc5 = large product catalog	×	✓	\checkmark	\checkmark	✓	×


Business Context Support

- Given TC and a ranking R=bc_i> bc_j> bc_k> ... of business contexts, which are the supported maximal sets of business contexts?
 - R represents the relative importance of business contexts
 - In other words, how well are business contexts supported?
- Company θ supports only TC ie 7+, and defines R = bc1 > bc4
 bc3 > bc5 > bc2
 - Two maximal sets exist
 - bc1, bc5, bc4
 - bc1, bc2, bc5
 - The former is preferable: bc4 > bc2



Tool Support: FM-Context

- Eclipse-based application for CFMs
 - Graphical modeling
 - Automated reasoning (all presented techniques)
 - Uses the DLV disjunctive datalog solver
- Free for download
 - http://goo.gl/wx3VI

Tool Support: FM-Context

Discussion

- We introduced contextual feature models
 - Distinguish between business and technical contexts
 - Enable reasoning about B/IT Alignment through "what-if" analysis
 - Useful tool to determine a well-suited configuration
- Future work
 - Methodological support
 - Extending the notation and tool
 - Empirical evaluation
- More?
 - Read our CAiSE'12 paper!!! [Dalpiaz12]

References

- Paper on Contextual Feature Models
 - [Dalpiaz12] Fabiano Dalpiaz, Raian Ali, Paolo Giorgini (2012)
 Aligning Software Configuration with Business and IT Context. In Proceedings of the 24th International Conference on Advanced Information Systems Engineering (CAiSE'12).
- Additional Reading
 - [Ali10] Raian Ali, Fabiano Dalpiaz, Paolo Giorgini (2010) A Goalbased Framework for Contextual Requirements Modeling and Analysis. Requirements Engineering 15 (4) pp. 439-458.
 - [Kang90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Carnegie Mellon University, 1990