Requirements Driven Software Service Evolution A feature based approach

> Feng-Lin Li DISI, University of Trento, Italy 2012-06-21

Outline

- Motivation & Background
- Problem Statement
- The Feature based Approach
- A Case Study
- Discussion & Conclusion

A Biological Evolution Example

• The evolution of turtle shell

- Odontochelys (oldest turtle)
- The turtle shells formed from the underside plastron (chest) first
- And then grew bony extensions of ribs and bone formation above backbones
- Existing *features* are modified and put into second use.

Background

- $D, S \models R$
 - D: domain assumptions, S: specification, R : requirements
 - Specification *S* is made up of a set of services
 - A service is composed of a group of features
 - A feature can be interpreted as both a cohesive set of individual requirements or a unit of system functionalities
 - Feature is a set of cohesive specification items.
- Goal Oriented Requirements Model
- Feature & Feature Model
- Service

Problem Statement

• Propagation:

• Given *D*, *S* |= *R* holds, if requirement *R* changes to *R*', how can we find a new specification *S*' so that *D*, *S*' |= *R*' holds?

• Traceability:

- Given D, S |= R holds, if the domain assumption D changes to D', how to find a new specification S', so that D', S' |= R still remain true?
- Given *D*, *S* |= *R* holds, if specification *S* changes to *S*', would the entailment *D*, *S*' |= *R* still remain true?

• Non-Functional Requirements:

• Given $D, S \models R$ holds (i.e. functional requirements are fulfilled), for specified non-functional requirements R_q , how to find a differentiated specification S_d , so that $D, S_d \models R, R_q$ holds?

General Framework

- Assumption
 - A goal model
 - A domain feature model
- Basic Idea
 - Mapping goal to features (*n*-to-*m* relationship)
 - Formalizing goal and feature
 - Reasoning the *support* relationship between feature and goal.
 - Mapping feature to service element
 - Clustering features into service

General Framework

Illustration

- Mapping goal to feature
 - $F_1 \cup F_2$ supports G_1
 - G_1 requires F_1
- Reasoning
 - Based on certain domain assumptions, together with the feature, it is able to satisfy a specified goal
- Mapping feature to service
 - A feature *f* can be mapped to an operation in a WSDL service

Illustration

Goal of Customer: $Happens(payOrder, t_0) \land \neg HoldsAt(ItemDelivered, t_0) \land t_0 < t \rightarrow HoldsAt(ItemDelivered, t)$

Goal of Seller: $Happens(startDeliver, t_1) \land \neg HoldsAt(RecepitAssigned, t_1) \land t_1 < t \rightarrow HoldsAt(ReceiptAssigned, t)$

$$\label{eq:Feature-1} \begin{split} \textit{Feature-1}: \textit{Happens}(\textit{dispatchItems}, t_2) \land \neg \textit{HoldsAt}(\textit{ItemDelivered}, t_2) \land t_2 \ < t \leq t_2 + d \rightarrow \textit{HoldsAt}(\textit{ItemDelivered}, t) \end{split}$$

Feature − 2: Happens(assignReceipt, t_3) ∧ ¬HoldsAt(ReceiptAssigned, t_3) → HoldsAt(ReceiptAssigned, t_3 + 1)

Methodology

- (1) Identify Goals (resolved)
 - Using goal model to represent requirements, the requirement problem could be resolved by reasoning on goal model (how to choose leaf goals so that the root goals will be satisfied) [1][2]
- (2) *Connecting goals with features* (Key Challenge)
 - Transforming goal model to feature model [3][4]
 - Deriving specification from goal (requirements), clustering specification items into feature.

• General Ideas (cont.)

- (3) Modeling feature [6]
 - Types: capability, quality, environment, implementation
 - Attributes: bind-time,
 - Logical Expression LTL, pre- and post- condition
 - State machine/chart
- (4) Modeling Service
 - Input-Output-Precondition- Effect(Post-condition) IOPE (i.e. WSDL)
 - Finite State machine
- (5) Mapping feature to service [5]
 - Structural: mapping feature to service elements

Online shop

- It is owned by a store selling different kinds of items, such as book, audio tape and CD.
- Roles: *customer*, *merchant*, *bank*, and *shipper*. For each role, there would be corresponding software service(s) play it.
- Customers are able to query items and specify their orders; *merchant* could handle orders, use the *bank* service to deal with payment transactions and depend on *shipper* to deliver physical items to customers.

Feature Model

A possible process

• A FSM model for the *shipping* service

- A functional-requirements driven evolution scenario
 - When a customer finds out that the items are broken, he/she may won't accept the items and assign the receiving note.
 - The changed requirements goal model

- A functional-requirements driven evolution scenario
 - The changed feature configuration

- A functional-requirements driven evolution scenario
 - The changed service model
 - In addition, the service can described use a WSDL model, i.e., a set of operations with input and output, a feature can be mapped to operations.

The evolved Finite State Machine model for the Shipping service

Discussion and Conclusion

• Key Challenges:

- Transforming goal into feature
 - How to establish the connection between goal and feature ?
- Specifying feature and modeling service
 - How to relate feature with service?
- How to predict and measure the non-functional requirements?
 - Predicting : Bayesian Net-Work, Personal Construct Theory
 - Monitoring : streaming event processing

Reference

- [1] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, "Reasoning with goal models," *Conceptual Modeling—ER* 2002, pp. 167–181, 2003.
- [2] R. Sebastiani, P. Giorgini, and J. Mylopoulos, "Simple and minimum-cost satisfiability for goal models," in *Advanced Information Systems Engineering*, 2004, pp. 675–693.
- [3] Y. Yu, J. C. . do Prado Leite, A. Lapouchnian, and J. Mylopoulos, "Configuring features with stakeholder goals," in *Proceedings of the 2008 ACM* symposium on Applied computing, 2008, pp. 645–649.
- [4] Y. Yu, A. Lapouchnian, S. Liaskos, J. Mylopoulos, and J. C. S. . Leite, "From goals to high-variability software design," in *Proceedings of the 17th international conference on Foundations of intelligent systems*, 2008, pp. 1–16.
- [5] T. Nguyen and A. Colman, "A Feature-Oriented Approach for Web Service Customization," in *Web Services (ICWS)*, 2010 IEEE International Conference on, 2010, pp. 393–400.
- [6] A. P. Felty and K. S. Namjoshi, "Feature specification and automated conflict detection," ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 12, no. 1, pp. 3–27, 2003.