
Developing an Ontology of Software
Evolution

Xiaowei Wang

ICT International Doctoral School,
University of Trento, Italy

xwang@disi.unitn.it

Preliminary research results

Thursday, July 05, 2012 1/24

Outline
1 • Motivation

2 • Basic intuitions

3 • Concept of “Software”

4 • Concept of “Species”

5 • Evolution, Maintenance and Adaptation

6 • Conclusion

7 • Future work

Thursday, July 05, 2012 2/24

Motivation

People rely on software
heavily

Software changes rapidly

No universally shared
concepts for software change

Thursday, July 05, 2012 3/24

As Godfrey states: Maintenance suggests preservation and fixing,
whereas evolution suggests new designs evolving from old ones

Different kinds of software change

Thursday, July 05, 2012 4/24

Basic intuitions
• Evolution only happens at species level

• Software Specifications = Software Species (laws)

• Software Species = Software Version (generally)

• Software (copy) = individual

• Changes in software species are counted as

software evolution

Thursday, July 05, 2012 5/24

A example for intuition

Thursday, July 05, 2012 6/24

MSW: Microsoft Word;
V: Version;
MSW-V3: Microsoft Word Verstion 3

Abbreviation Related concepts

D Domain knowledge

R Requirement

S Specification

Des Design

I Implementation

(𝐷, 𝑆 ⊢ 𝑅) ∧ (𝐷𝐷𝑒𝑠, 𝐷𝑒𝑠 ⊢ 𝑆) ∧ (𝐷𝐼 , 𝐼 ⊢ 𝐷𝑒𝑠)

Thursday, July 05, 2012 7/24

A formula according to requirement engineering

A graphical explanation of the formula

(𝐷, 𝑆 ⊢ 𝑅) ∧ (𝐷𝐷𝑒𝑠, 𝐷𝑒𝑠 ⊢ 𝑆) ∧ (𝐷𝐼 , 𝐼 ⊢ 𝐷𝑒𝑠)

Thursday, July 05, 2012 8/24

A preliminary ontology of software evolution according to DOLCE

Thursday, July 05, 2012 9/24

Concept of Software

• position:

DOLCE:Physical Object(source code in harddisk)

• research target:

Software as DOLCE: Artefactual object (source code

according to a design)

∃𝑥(𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒(𝑥) → 𝐴𝑟𝑡𝑒𝑓𝑎𝑐𝑡𝑢𝑟𝑎𝑙 𝑜𝑏𝑗𝑒𝑐𝑡(𝑥))

Thursday, July 05, 2012 10/24

An ontology of Artefactual object

Thursday, July 05, 2012 11/24

Concetps according to Oberle’s ontology

• Software (“SoftwareAsCode”):

 Encoding of an algorithm specification

 (e.g. C, Java, Python, pseudo code or in mind)

• ComputationalObjects:

 Realization of the code in a concrete hardware, and he

positioned it in DOLCE framework as PhysicalEndurants

• ComputationalActivity

 The activities presented by the running system

An comparison between Oberle’s ontology and ours

Thursday, July 05, 2012 12/24

An comparison between Oberle’s ontology and ours

Thursday, July 05, 2012 13/24

Concepts from us Concepts from Oberle Comparison

Specification No species level
Design SoftwareAsCode

(encoding of algorithm)
“SoftwareAsCode” (despite in fact) actually
more similar with “Design”, it could be pseudo
code or even algorithm in mind.

Software (copy)
developed from
Implementation

ComputationalObject
(physicial existence on
hard disk or memory
card)

We prefer to call the realization of a design as a
piece of software. It seems unintuitive we can
not call a copy of Microsoft Word, for example,
as a piece of software which is stored in a hard
disk.

 ComputationalActivity
(performance in
running time)

We believe that “ComputationalActivity” is a
suitable choice of this concept to represent the
activities of software in running time, and we
prefer to reuse this concept in our ontology.

An comparison between Oberle’s ontology and ours

Thursday, July 05, 2012 14/24

Conept of Species
• A species is described as a “natural kind” according

to Manhner’s theory

• Property (something we can perceive or measure)

 (e.g. shapes, colors, sizes, weights, length …)

• Laws (something constraining the related properties)

 (e.g. thermometer)

• Natural kind (a set of shared laws)

 if we focus on constantly related properties, we are

able to find things possessing the same laws

 Thursday, July 05, 2012 15/24

Properties and laws

Thursday, July 05, 2012 16/24

Natural kind (species)

As shown in this figure, P is a set of all properties, P(x) represents the
properties of individual x, and P(y) represents the properties of individual y, L
represents all the laws. According to this, x and y share the set of laws
“L(x,y)”, hence x and y are in the same natural kind (species).

Thursday, July 05, 2012 17/24

• Biological species
a) It is a natural kind (rather than an arbitrary collection),

b) All of its members are organisms (present, past, or future),

c) It “descends” from some other natural kind (biotic or prebiotic).

• Software species
a) It is a natural kind, an abstract class contain the laws constraining its

members;

b) All of its members are copies of software;

c) The structure of all software species is like a forest but not a tree as

bio-species, to count two elements in the same species, they have to

be in the same tree.

Definitions of species

Thursday, July 05, 2012 18/24

Evolution situations

Thursday, July 05, 2012 19/24

Evolution, Maintenance
and Adaptation

Happens at Formulas

Evolution Species level (𝐷, 𝑆′ ⊢ 𝑅′) ∧ (𝐷𝐷𝑒𝑠, 𝐷𝑒𝑠′ ⊢ 𝑆′) ∧ (𝐷𝐼 , 𝐼′ ⊢ 𝐷𝑒𝑠′)
 (𝐷′, 𝑆′ ⊢ 𝑅) ∧ (𝐷′𝐷𝑒𝑠, 𝐷𝑒𝑠′ ⊢ 𝑆′) ∧ (𝐷′𝐼, 𝐼′ ⊢ 𝐷𝑒𝑠′)

Maintenance Individual level (𝐷, 𝑆 ⊢ 𝑅) ∧ (𝐷𝐷𝑒𝑠, 𝐷𝑒𝑠 ⊢ 𝑆) ∧ (𝐷𝐼, 𝐼′ ⊢ 𝐷𝑒𝑠)
(𝐷, 𝑆 ⊢ 𝑅) ∧ (𝐷𝐷𝑒𝑠, 𝐷𝑒𝑠′ ⊢ 𝑆) ∧ (𝐷𝐼, 𝐼′ ⊢ 𝐷𝑒𝑠′)

Adaptation Individual level (𝐷, 𝑆 ⊢ 𝑅) ∧ (𝐷𝐷𝑒𝑠, 𝐷𝑒𝑠 ⊢ 𝑆) ∧ (𝐷𝐼, 𝐼′ ⊢ 𝐷𝑒𝑠)
(𝐷, 𝑆 ⊢ 𝑅) ∧ (𝐷𝐷𝑒𝑠, 𝐷𝑒𝑠′ ⊢ 𝑆) ∧ (𝐷𝐼, 𝐼′ ⊢ 𝐷𝑒𝑠′)
(𝐷, 𝑆 ⊢ 𝑅) ∧ (𝐷𝐷𝑒𝑠, 𝐷𝑒𝑠 ⊢ 𝑆) ∧ (𝐷𝐼, 𝐼 ⊢ 𝐷𝑒𝑠)

Thursday, July 05, 2012 20/24

Conclusion
• This paper aims at providing an ontology of

software evolution

• Our work is mainly base on DOLCE framework

• Our work can be served as groundwork supporting

other researches in software evolution.

Thursday, July 05, 2012 21/24

Future work
• Firstly, more relating concepts should be present.

• Then, besides positioning the concepts into DOLCE

framework, a set of formal constraints of these

concepts should be provided.

• Finally, we need to adapt our ontology into real

case studies to check its efficiency.

Thursday, July 05, 2012 22/24

The end

Thursday, July 05, 2012 23/24

References
• 1. Swanson, E.B., The dimensions of maintenance, in Proceedings of

the 2nd international conference on Software engineering1976, IEEE
Computer Society Press: San Francisco, California, United States. p. 492-
497.

• 2. Godfrey, M.W. and D.M. German. The past, present, and future of
software evolution. in Frontiers of Software Maintenance, 2008. FoSM
2008. 2008.

• 3. Vieu, L., S. Borgo, and C. Masolo, Artefacts and Roles: Modelling
Strategies in a Multiplicative Ontology, in Proceedings of the 2008
conference on Formal Ontology in Information Systems: Proceedings of
the Fifth International Conference (FOIS 2008)2008, IOS Press. p. 121-134.

• 4. Masolo, C., et al., WonderWeb Deliverable D18 Ontology Library
(final), 2003.

• 5. Daniel Oberle, S.G., Steffen Staab, An Ontology for Software, in
Handbook on Ontologies, R.S. Steffen Staab, Editor 2009, Springer.

• 6. Mahner, M., What is a species? Journal for General Philosophy of
Science, 1993. 24(1): p. 103-126.

Thursday, July 05, 2012 24/24

