Reasoning with Norm Models

Alberto Siena

Motivation

- Law is part of the environment, which the STS operates in
- The need to capture legal prescriptions at requirements time grows when law becomes difficult to be captured
 - Language
 - Interpretation
 - (Change)
 - Structural complexity ("Spaghetti law")
 - Applicability conditions
 - Derogations
 - Cross-references
 - Hierarchies

D

Objectives

- Support requirements engineers in finding a path through the conditional elements
- No heavyweight approaches (AI)
- Rely on conceptual modeling
- Automatic reasoning
- Reduce the number of alternatives to a tractable subset
 - (Best case: | alternative)

Nòmos

- Framework for building conceptual models of norms
 - Vaguely based on i*
 - Adds the concepts of Norm
 - Borrows the concept of Situation
- RE language independent
 - No domain information (e.g., goals)
 - Can be attached to any other RE modeling language
 - Class-level
- Maps natural language documents onto property graphs

Nòmos

- Law as a graph L = {N, S, R, r}
- N = Norm elements: tuples (t, H, C, A, P)
 - t = Norm Type (duty, right)
 - H = Holder
 - C = Counter-part
 - A = Precedent
 - P = Consequent
- S = Situation elements
 - satisfied, not satisfied, undefined
- R = Role elements
 - Used for clustering

r = Relations

 Link Situations and Roles to Norms' precedents, consequents, holders and counter-parts

Intuition

- Not all the alternative have the same properties
- Regulatory compliance engineering as a problem of alternative selection
 - pruning unnecessary alternatives
 - satisfying desiderata
- How to formalize the model?
- How to make a choice?

How to formalize the model?

Datalog

- First-order logic language for deductive databases
- Bottom-up and top-down queries

Dlv

- Disjunctive Datalog
- Use variables grounding to generate sets of answers

Approach

- Define transformation rules from Nòmos relations and axioms into Datalog predicates and rules
- Encode a given Nòmos model as a Datalog program

Situations: satisfied, not satisfied, undefined

Relations	If source is	Target is
Activate	Satisfied	Applicable
Block	Satisfied	Not Applicable
Satisfy	Satisfied	Satisfied
Break	Satisfied	Not Satisfied
Endorse	Complied	Applicable
Derogate	Complied	Not Applicable
Imply	Complied Violated	Complied Violated


```
Formalization
                                                    break
                                        activate
Activate and Satisfy
                                            satisfy block
                                                         s4
                                    s1
% satisfy( d1, [s2] ).
                                           s2
                                                  s3
satisfied(d1) :- satisfied(s2).
satisfied unknown(d1) :- not satisfied(s2).
% break( d1, [s4] ).
not satisfied(d1) :- satisfied(s4).
% activate( d1, [s1] ).
applicable(d1) :- satisfied(s1).
% block( d1, [s3] ).
not applicable(d1) :- satisfied(s3).
```

Formalization Derogate


```
% activate( d1, [s1] ).
applicable(d1) :- satisfied(s1), not satisfied(d1s).
```

```
% derogate( d1, [d2] ).
satisfied(d1s) :- compliant(d2).
not_applicable(d1) :- satisfied(d1s).
```

Formalization Compliance rules

```
% Compliance rules for duty d1
compliant(d1) :- applicable(d1), satisfied(d1).
violated(d1) :- applicable(d1), not satisfied(d1).
inconclusive(d1) :- applicabile_undefined(d1).
tolerated(d1) :- not_applicable(d1).
tolerated(d1) :- compliant(d1).
conflict(d1) :- tolerated(d1), violated(d1).
```

```
% imply( d3, [d1] ).
compliant(d3) :- compliant(d1).
```

How to make a choice?

Define properties to be verified

- Input: a Nòmos model + desirable properties
- Choice: properties optimization
- Output: a subset of the alternatives space in which the properties hold

Properties identified so far:

- Compliance
- Preference
- Freedom

D

Desirability

Compliance

- Compliant solutions
 - Foreach N in L, tol(N)
- Problem: true alternatives
 Example

Application must submitted through the electronic form

Application must be submitted:a) through the electronic formb) or, via email

Need to structure hierarchies: use Imply relations

% Objectives
tol(sec502) ?

Preference

D

- Situations have cost
 - E.g.: time, money, etc.
- Cost can't be properly evaluated
- Relative cost can be estimated
 - Relative cost = "higher" or "lower"
 - Partial order over situations

```
% rankings
% rank 1: time % rank 2: cost
:~ st(s1). [1:1] :~ st(s1). [2:2]
:~ st(s2). [1:2] :~ st(s2). [2:1]
```

Freedom

- Law gives explicit alternatives and rights to be discretionally exercised
- Once decided to select one alternative or to exercise one right, they become mandatory requirements
 - Changing means do again the compliance check
- The less we decide, the more we are free to do at requirements elicitation
- Operationally: use "Undefined" values

```
% Ranking
% rank 1: freedom
:~ sf(s1). [1:1]
:~ st(s1). [1:1]
```

Desiderata

Some situations are known or desired to have certain values

- Information arising from the domain
- "What if" analysis
- Expressed as constraints.

```
% Scenario
st(s1) v sf(s1) v su(s1).
st(s2) v sf(s2) v su(s2).
st(s3) v sf(s3) v su(s3).
st(s4).
st(s5).
st(s0).
```

Tool support

NRTool

D

Java Wrapper on top of DLV

Applicability analysis

• Given a set of known situations, which norms apply?

Compliance analysis

• Given a set of known situations, which norms are violated?

Compliance search

- Given a set of known situations, which situations should be assigned to reach compliance?
- If at least one solution is found, then compliance is ensured

	# norms duty sec502 a b c a2 a2i a2ii sec528 sec524 sec508 sec506 right b2i b2ii a1 a1i a1ii a1iv		activate sl b activate s5 sl3 aliv activate sl4 ali activate s6 alii activate s7 a2ii	
-	# situations situation s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s13 s14 always	s12	activate s7 a211 activate s8 s11 s12 a2i activate s10 c	
	# law structure relations imply a l iv a l i a l ii a l or imply a2ii a2i a2 or imply b2i b2ii b a a l a2 c sec502		satisfy s1 b2i satisfy s1 b2ii satisfy s3 b satisfy s1 aliv satisfy s1 s4 ali	
	derogate b2i b derogate b2ii b derogate a2i b derogate a2ii b derogate a1 a		satisfy s1 a11 satisfy s1 a2ii satisfy s1 s4 a2i satisfy s1 s9 c break s1 a	
	derogate a2 a derogate a2 a l		value st always	
	endorse a2i b2ii endorse a1i b2ii	_	rank freedom freedom st s s2 s3 s4 s5 s6 s7 s8 s9 s10 s12 s13 s14	sII
	# compliance relations activate always a activate s2 b2i		freedom sf s s2 s3 s4 s5 s6 s7 s8 s9 s10 s12 s13 s14	sll
	activate s4 b2ii		query tol sec502	

Methodology

Results

▶ 4.782.969 → I

- "PHI is used or disclosed
- Disclosures to or requests by a health care provider for
- treatment
- Use or disclosure made to the individual There is a request from the Secretary Disclosure limited to the restriction
- There is an agreement to a restriction"
- Compliant; Freedom degree: 6
- Freedom degree 7: 16 alternatives
- Freedom degree 8: 113 alternatives

Future work

- Reasoning about Roles
- Reasoning about instances
- Defining additional, significant properties
- Larger data set
- Test in other contexts
 - (not just law compliance)
- Time (sequences of situations)

Thank you