

DETECTING INCONSISTENCIES BETWEEN ORGANIZATIONAL REQUIREMENTS AND SECURITY REQUIREMENTS WITH STS-ML

Elda Paja, Fabiano Dalpiaz, Paolo Giorgini

October 25th 2012

Socio-Technical Systems (STS)

- □ An interplay of different subsystems
 - Not only technical, but also humans and organisations
 - Each subsystem is autonomous
 - Defined in terms of interaction among subsystems
 - Each subsystem needs to socially rely on others to fulfill its objectives
- Examples include smart homes, e-commerce sites, eHealth systems, etc.

An example of STS

The Security Problem in STSs

- □ Interaction is everywhere!
 - Technical Systems Technical Systems
 - Technical Systems Social Actors
 - Social Actors Social Actors
- Social aspects are a main concern
 Decentralized setting: no controlling authority
 Autonomy: security cannot be enforced

Our Approach: STS-ml

- □ Role and goal oriented requirements modelling language
- □ Security requirements as social contracts that constrain interactions

□ Allow actors to express constraints (security needs) over interactions

Social dependence

■ E.g.: visiting researcher depends on the cheap travel inc. to book the hotel and flight tickets

Documents exchange

E.g.: visiting researcher wants the cheap travel inc. to use his personal data information strictly to book the hotel and flight tickets, but not for any other purposes

□ Models are built diagrammatically

Multiple views, each focusing on a specific perspective

STS-ml: outline

6

STS-Tool

Formal Framework

- □ A framework to detect inconsistencies
 - Inconsistencies not trivial to find
 - Scalability is an issue

Formal language to support automated reasoning about the expressed security needs

□ Formally Defined

- Security needs supported by STS-ml
- The derived security requirements (in terms of social commitments)
 - Are the security needs violated in the modelled STS?
 - Key question: Is the specification consistent?
- □ Built on top of DLV

Define transformation rules from STS-ml concepts and relations into Datalog predicates

Define propagation rules

Modelling with STS-ml

Social view: an example

Social view: an example

Information view: an example

Authorisation view: an example

Authorisation view: expressing security needs

13

q

Authorisation view: expressing security needs

14

q

Supported security needs

- non-repudiation (3 types): non-repudiation of delegation, of acceptance, of delegation and acceptance;
 no-delegation;
 redundancy (4 types): fallback redundancy single, fallback redundancy multi, true redundancy single, true redundancy multi;
 integrity of transmission
- non-usage, non-modification, non-production, non-disclosure, need-toknow
- □ separation of duties, binding of duties

Requirements specification via commitments

□ In STS-ml

Security requirements constrain interactions in contractual terms

- These contracts are expressed as social commitments
- □ Social commitment: a promise with contractual validity
 - made by a debtor actor to a creditor actor
 - that a state of affairs will be brought about [consequent]
 - (optional) provided that another state of affairs holds [antecedent]
- □ E.g.: C(Elda, RE-seminar-group, seminar scheduled, talk given)

Commitments as requirements

- □ Commitments can express requirements
 - Social commitments represent the constraints the actors shall comply with while interacting
 - For each security need expressed from one actor to the other, a commitment is expected on the opposite direction to comply with the security need
- □ Security requirements via commitments
 - Debtor actor = Responsible
 - Creditor actor = Requester
 - Antecedent = Precondition
 - Consequent = Security requirement

Derived security requirements

Responsible	Security Requirement	Requester
TAS	non-repudiation-of-acceptance (delegated(Tourist,TAS,tickets booked))	Tourist
Tourist	non-repudiation-of-delegation (delegated(Tourist,TAS,tickets booked))	TAS
TAS	True-redundancy-multiple-actor(tickets booked)	Tourist
Hotel	no-delegation(hotel booked)	Tourist
TAS	need-to-know(personal data, trip planned, u)	Tourist
Hotel	non-disclosure(personal data)	Tourist
Amadeus FS	non-modification(personal data 🛛 itinerary)	TAS
TAS	non-production(personal data 🛛 itinerary)	Tourist
Any	not-achieve-both(room selected, prepayment made)	Org

Automated Analysis

- □ Consistency Analysis
 - Does the model comply with the semantics of STS-ml?
 - **E**.g.: part-of cycles, contribution cycles
- □ Security Analysis
 - Do actors comply with the specified security needs?
 - Identify violations of security needs
 - E.g.: violation of no-delegation, non-usage, non-disclosure

Consistency Analysis

- □ Post-modelling checks
 - Give warnings or errors and visualize to designer
- □ Current checks
 - Single goal decompositions
 - Leaf goal delegation
 - Delegation cycles
 - Organisational constraints over goal trees
 - Part-of cycles
 - Contribution cycles
 - Ownership
 - Information without owner
 - Authorisations
 - Not empty, no duplicates

warning

Security Analysis

□ It relies upon generating possible worlds

- Identify and visualize possible problems
- The engineer fixes the problem
- Behind the scenes: formalization in disjunctive Datalog

Security Analysis

Identifying Organisational – Security Inconsistencies

- STS-ml supports performing a set of actions
 - Delegate
 - Use
 - Modify
 - Produce
 - Distribute
 - Provide
 - Authorise

- Security needs define what actions must not be performed
 - No-delegation
 - Non-usage
 - Non-modification
 - Non-production
 - Non-distribution
 - Non-transferrable authority

Identifying Inconsistencies: an example

- Organizational requirements Security requirements Inconsistencies
 - Security requirements cannot be satisfied in the modeled organizational structure

Identifying inconsistencies: an example

□ No-delegation

%define violation property, goal might be decomposed

violate_no_delegation(R2,R1,G,Gi) :- delegated(R1,R2,G), no_delegation(R1,R2,G,Gi), delegated(R2,_,Gi).

% expand no-delegation to the subgoals

no_delegation(R1,R2,Gp,G) :- no_delegation(R1,R2,_,Gp), has(R2,G), isRefined(R2,Gp,G).

□ Results

violate_no_delegation(Hotel,Tourist,hotel booked,hotel booked)

Tool Support: STS-Tool

- STS-Tool is the modelling and analysis support tool for STS-ml
 - Built on top of Eclipse
 - Standalone Eclipse RCP application
- □ Freely available for download:

http://www.sts-tool.eu

- Derivation of security requirements
- □ Report generation
- Multi-platform (Win, Linux, Mac)

Ongoing and Future Work

Implement Analysis for detecting inconsistent security requirements

□ Evaluation

- 2 different case studies
 - Air Traffic Control Management

■ eGoverment

Special Thanks

STS Team

- Dr. Fabiano Dalpiaz
- Mauro Poggianella (Developer)
- Dr. Pierluigi Roberti
- Prof. Paolo Giorgini

ANIKE TOS The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant no 257930 (Aniketos)

The end

Thank you!

Questions?

Contact: paja@disi.unitn.it