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1. Context and Motivation 

People rely on software:  

e.g. bank, hospital, government… 

Software changes rapidly: 

e.g. Windows xp-> vista-> 7 

Managing changes is costly: 

costs over 50% project budget 
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1.1 Concept Ambiguity 

Customer 

Programmer Consultant 

Software 

Requirement 

Specification Code ready to run 

? ? 

? 

The concept ambiguity makes software developing a never 

ending iterating process 
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Shortage in human memory 

• Original developers may leave the project 

• Current maintainers may forget the details 

 

Shortage in documentation 

• Few documents are available 

• Documents are out of date 

1.2 Knowledge Missing 

5/28 Section 1. Context and Motivation >> Section 2 >> Section 3 >> Section 4 >> Section 5 >> Section 6 



2. Research Problem 
for concept ambiguity 

• 2.1 Concept of software 

• 2.2 Concept of software evolution 

 

for knowledge missing 

• 2.3 Methods and tools for software evolution 
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• Algorithm (e.g. a bubble sorting algorithm) 

• Source code (e.g. encoded in Java/C) 

• Realization of source code (e.g. the code stored on a hard disk) 

• Running process of algorithm (e.g. sorting process running in 

a computer) 

 

• Specification document? 

• Design document? 

 

To understand software evolution, a deeper understanding of 

software itself is necessary and essential.  

 

2.1 concept of software 
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e.g. software evolution v.s. software maintenance 

• Used interchangeably [5] 

• Maintenance subsumes evolution [2] 

• Evolution subsumes maintenance [7] 

• Terms as “change” or “aging” are used to avoid 

misinterpretations [4], [15] 

 

 

To clarify the concepts relating to software evolution, thereby 

getting a clear understanding of software evolution phenomena. 

2.2 concept of software evolution 

8/28 Section 1 >> Section 2. Research Problem >> Section 3 >> Section 4 >> Section 5 >> Section 6 



Tools are usually designed as file-based, and this limits the 

capability to track the semantics of the changes.  

• e.g. CVS (Concurrent Versions System ) 

 

 

 

 

 

 

To track the changes in software with higher semantics.  

 

2.3 methods and tools for software 

evolution 
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Dimension CVS 

Time of change Compile-time 

Change history Any 

Artifact File 

Granularity File 



3. Research Approach 
 

• 3.1 Ontology of software 

 

• 3.2 Ontology of software evolution 

 

• 3.3 Language for software evolution 
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3.1 Ontology of software 
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3.1 Ontology of software 
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3.1 Ontology of software 
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3.1 Ontology of software 
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Software Representation (Syntax) Software System (Referent) 

A goal of managing emails An email application 

Design modules of email creating, 

receiving and sending 

Activities of creating, receiving 

and sending emails 

Source code fulfilling the design 
The processes running in a 

computer 

e.g. an email system 

3.1 Ontology of software 
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• Darwin published his memorable book On The Origin of the 

Species. 

 

• Software and biological creatures are both living in the 

environments which are continuously changing. 

 

• To survive in such continuously changing environments, 

software and biological creatures both need to change 

themselves to gain better adaptability. 

3.2 Ontology of software evolution 
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• Differently from living creature, software has no life. 

 

• It is non-tangible and expressed through representation 

languages. 

 

if gene is interpreted as “instructions of features” 

• For living creatures, the gene (instruction) is stored in the cells 

(body), and the gene can be copied through cell reproduction. 

• For software, the specification (instruction) and the source 

code (body) are stored separately, and the specification can not 

be copied through copying the source code. 

3.2 Ontology of software evolution 
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3.2 Ontology of software evolution 
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e.g. versioning numbers 

• Traditional versioning numbers are decided by the significance 

of changes between releases, but these changes are entirely 

arbitrary and up to the author.  

 

• According to our software abstraction layers, the significance 

level might be determined as “v 1.2.3”  

o 1- Specification number 

o 2- Design number 

o 3- Source code number 

3.2 Ontology of software evolution 
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𝐷, 𝑆 ⊢ 𝑅 ∧ 𝐷𝑒𝑠𝑖𝑔𝑛 ⊢ 𝑆 ∧ (𝑆𝑜𝑢𝑟𝑐𝑒 𝐶𝑜𝑑𝑒 ⊢ 𝐷𝑒𝑠𝑖𝑔𝑛) 

𝐷, 𝑆 ⊢ 𝑅  

𝐷, 𝑆′ ⊢ 𝑅 ∧ 𝐷𝑒𝑠𝑖𝑔𝑛′ ⊢ 𝑆′ ∧ (𝑆𝑜𝑢𝑟𝑐𝑒 𝐶𝑜𝑑𝑒′ ⊢ 𝐷𝑒𝑠𝑖𝑔𝑛′) 

3.3 Language for software evolution 
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• Levels of representation languages 

 

 

 

 

3.3 Language for software evolution 
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Level Primitive constructs Interpretation 

Logical Predicates Arbitrary 

Epistemological 
Structuring relations  
concepts and roles 

Arbitrary 

Ontological 
Structuring relations  
satisfying meaning postulates 

Constrained 

Conceptual Cognitive primitives Subjective 

Linguistic linguistic primitives Subjective 



3.3 Language for software evolution 
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4. Related Work 
 

• 4.1 Concept of software 

 

• 4.2 Software maintenance/evolution 

 

• 4.3 Methods and tools for software evolution 
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Definition of software 

• Osterweil [13], Eden [6], Martin [11] 

 

Ontology of software 

• Oberle [12], SWORD 

 

Ontology of information object 

• METOKIS, IAO 

4.1 Concept of software 
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Study in software engineering 

• laws of software evolution, software process models, software 

configuration management, reverse engineering, refactoring 
 

Metaphor between software and biological evolution 

• Mahner [10], Godfrey [7] 
 

Taxonomies of software evolution 

• Lientz & Swanson [17], Chaptin  [5], Buckley [4] 
 

Ontologies of software evolution 

• Kitchenham  [9], Ruiz [16], Anquetil  [1], Tappolet [19] 

4.2 Software maintenance/evolution 
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Software documentation 

• Parnas [14], [15] 

 

Tools and methods 

• Buckley [4], Tang [18], Tappolet [19], Beyer [3] 

 

Language extension based on ontology 

• Giancarlo [8] 

 

4.3 Methods and tools for software 

evolution 
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5. Evaluation Plan 
OntoClean methodology 

• Imposing several constraints on the taxonomic structure of an 

ontology, which could help in eliminating inappropriate and 

inconsistent modeling choices. 

 

Prototype  

• Provide a tool with the ontology-based language embedded 

• Adapt this tool in a software developing project 

• Collect the feedback from stakeholders 
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6. Conclusion 
• This project aims at providing an ontology of software, an 

ontology of software evolution, and a ontology-base language 

 

• We try to get a deeper understanding of software evolution 

phenomena, thereby facilitating the difficulty in software 

evolution. 

 

• We hope our work could be served as groundwork supporting 

other researches in software evolution.  
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The end 
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