
An Ontology of Software Evolution

Xiaowei Wang

ICT Doctoral School,
University of Trento, Italy

xwang@disi.unitn.it

A Research Proposal

1/28 Dec. 2012

Outline

1 • Context and Motivation

2 • Research Problem

3 • Research Approach

4 • Related Work

5 • Evaluation Plan

6 • Conclusion

2/28

1. Context and Motivation

People rely on software:

e.g. bank, hospital, government…

Software changes rapidly:

e.g. Windows xp-> vista-> 7

Managing changes is costly:

costs over 50% project budget

3/28 Section 1. Context and Motivation >> Section 2 >> Section 3 >> Section 4 >> Section 5 >> Section 6

1.1 Concept Ambiguity

Customer

Programmer Consultant

Software

Requirement

Specification Code ready to run

? ?

?

The concept ambiguity makes software developing a never

ending iterating process

4/28 Section 1. Context and Motivation >> Section 2 >> Section 3 >> Section 4 >> Section 5 >> Section 6

Shortage in human memory

• Original developers may leave the project

• Current maintainers may forget the details

Shortage in documentation

• Few documents are available

• Documents are out of date

1.2 Knowledge Missing

5/28 Section 1. Context and Motivation >> Section 2 >> Section 3 >> Section 4 >> Section 5 >> Section 6

2. Research Problem
for concept ambiguity

• 2.1 Concept of software

• 2.2 Concept of software evolution

for knowledge missing

• 2.3 Methods and tools for software evolution

6/28 Section 1 >> Section 2. Research Problem >> Section 3 >> Section 4 >> Section 5 >> Section 6

• Algorithm (e.g. a bubble sorting algorithm)

• Source code (e.g. encoded in Java/C)

• Realization of source code (e.g. the code stored on a hard disk)

• Running process of algorithm (e.g. sorting process running in

a computer)

• Specification document?

• Design document?

To understand software evolution, a deeper understanding of

software itself is necessary and essential.

2.1 concept of software

7/28 Section 1 >> Section 2. Research Problem >> Section 3 >> Section 4 >> Section 5 >> Section 6

e.g. software evolution v.s. software maintenance

• Used interchangeably [5]

• Maintenance subsumes evolution [2]

• Evolution subsumes maintenance [7]

• Terms as “change” or “aging” are used to avoid

misinterpretations [4], [15]

To clarify the concepts relating to software evolution, thereby

getting a clear understanding of software evolution phenomena.

2.2 concept of software evolution

8/28 Section 1 >> Section 2. Research Problem >> Section 3 >> Section 4 >> Section 5 >> Section 6

Tools are usually designed as file-based, and this limits the

capability to track the semantics of the changes.

• e.g. CVS (Concurrent Versions System)

To track the changes in software with higher semantics.

2.3 methods and tools for software

evolution

9/28 Section 1 >> Section 2. Research Problem >> Section 3 >> Section 4 >> Section 5 >> Section 6

Dimension CVS

Time of change Compile-time

Change history Any

Artifact File

Granularity File

3. Research Approach

• 3.1 Ontology of software

• 3.2 Ontology of software evolution

• 3.3 Language for software evolution

10/28 Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6

3.1 Ontology of software

11/28 Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6

3.1 Ontology of software

12/28 Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6

3.1 Ontology of software

13/28 Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6

3.1 Ontology of software

14/28 Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6

Software Representation (Syntax) Software System (Referent)

A goal of managing emails An email application

Design modules of email creating,

receiving and sending

Activities of creating, receiving

and sending emails

Source code fulfilling the design
The processes running in a

computer

e.g. an email system

3.1 Ontology of software

15/28 Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6

• Darwin published his memorable book On The Origin of the

Species.

• Software and biological creatures are both living in the

environments which are continuously changing.

• To survive in such continuously changing environments,

software and biological creatures both need to change

themselves to gain better adaptability.

3.2 Ontology of software evolution

16/28 Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6

• Differently from living creature, software has no life.

• It is non-tangible and expressed through representation

languages.

if gene is interpreted as “instructions of features”

• For living creatures, the gene (instruction) is stored in the cells

(body), and the gene can be copied through cell reproduction.

• For software, the specification (instruction) and the source

code (body) are stored separately, and the specification can not

be copied through copying the source code.

3.2 Ontology of software evolution

17/28 Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6

3.2 Ontology of software evolution

18/28 Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6

e.g. versioning numbers

• Traditional versioning numbers are decided by the significance

of changes between releases, but these changes are entirely

arbitrary and up to the author.

• According to our software abstraction layers, the significance

level might be determined as “v 1.2.3”

o 1- Specification number

o 2- Design number

o 3- Source code number

3.2 Ontology of software evolution

19/28 Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6

𝐷, 𝑆 ⊢ 𝑅 ∧ 𝐷𝑒𝑠𝑖𝑔𝑛 ⊢ 𝑆 ∧ (𝑆𝑜𝑢𝑟𝑐𝑒 𝐶𝑜𝑑𝑒 ⊢ 𝐷𝑒𝑠𝑖𝑔𝑛)

𝐷, 𝑆 ⊢ 𝑅

𝐷, 𝑆′ ⊢ 𝑅 ∧ 𝐷𝑒𝑠𝑖𝑔𝑛′ ⊢ 𝑆′ ∧ (𝑆𝑜𝑢𝑟𝑐𝑒 𝐶𝑜𝑑𝑒′ ⊢ 𝐷𝑒𝑠𝑖𝑔𝑛′)

3.3 Language for software evolution

20/28 Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6

• Levels of representation languages

3.3 Language for software evolution

21/28 Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6

Level Primitive constructs Interpretation

Logical Predicates Arbitrary

Epistemological
Structuring relations
concepts and roles

Arbitrary

Ontological
Structuring relations
satisfying meaning postulates

Constrained

Conceptual Cognitive primitives Subjective

Linguistic linguistic primitives Subjective

3.3 Language for software evolution

22/28 Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6

4. Related Work

• 4.1 Concept of software

• 4.2 Software maintenance/evolution

• 4.3 Methods and tools for software evolution

23/28 Section 1 >> Section 2 >> Section 3 >> Section 4. Related Work >> Section 5 >> Section 6

Definition of software

• Osterweil [13], Eden [6], Martin [11]

Ontology of software

• Oberle [12], SWORD

Ontology of information object

• METOKIS, IAO

4.1 Concept of software

24/28 Section 1 >> Section 2 >> Section 3 >> Section 4. Related Work >> Section 5 >> Section 6

Study in software engineering

• laws of software evolution, software process models, software

configuration management, reverse engineering, refactoring

Metaphor between software and biological evolution

• Mahner [10], Godfrey [7]

Taxonomies of software evolution

• Lientz & Swanson [17], Chaptin [5], Buckley [4]

Ontologies of software evolution

• Kitchenham [9], Ruiz [16], Anquetil [1], Tappolet [19]

4.2 Software maintenance/evolution

25/28 Section 1 >> Section 2 >> Section 3 >> Section 4. Related Work >> Section 5 >> Section 6

Software documentation

• Parnas [14], [15]

Tools and methods

• Buckley [4], Tang [18], Tappolet [19], Beyer [3]

Language extension based on ontology

• Giancarlo [8]

4.3 Methods and tools for software

evolution

26/28 Section 1 >> Section 2 >> Section 3 >> Section 4. Related Work >> Section 5 >> Section 6

5. Evaluation Plan
OntoClean methodology

• Imposing several constraints on the taxonomic structure of an

ontology, which could help in eliminating inappropriate and

inconsistent modeling choices.

Prototype

• Provide a tool with the ontology-based language embedded

• Adapt this tool in a software developing project

• Collect the feedback from stakeholders

27/28 Section 1 >> Section 2 >> Section 3 >> Section 4 >> Section 5. Evaluation Plan >> Section 6

6. Conclusion
• This project aims at providing an ontology of software, an

ontology of software evolution, and a ontology-base language

• We try to get a deeper understanding of software evolution

phenomena, thereby facilitating the difficulty in software

evolution.

• We hope our work could be served as groundwork supporting

other researches in software evolution.

28/28 Section 1 >> Section 2 >> Section 3 >> Section 4 >> Section 5 >> Section 6. Conclusion

The end

References:
• [1] Anquetil, N. et al. 2007. Software maintenance seen as a

knowledge management issue. Information and Software Technology.
49, 5 (May. 2007), 515–529.

• [2] Bennett, K.H. and Rajlich, V.T. 2000. Software maintenance and
evolution: a roadmap. Proceedings of the Conference on The Future of
Software Engineering (New York, NY, USA, 2000), 73–87, DOI=
10.1145/336512.336534.

• [3] Beyer, D. and Hassan, A.E. 2006. However, version control systems
(VCS) contain valuable historical information about a project, and mining
the VCS repository may reveal interesting events in the development and
maintenance of long-lived projects. Reverse Engineering, 2006.
WCRE ’06. 13th Working Conference on, DOI= 10.1109/WCRE.2006.14.

• [4] Buckley, J. et al. 2005. Towards a taxonomy of software change:
Research Articles. J. Softw. Maint. Evol. 17, 5 (2005), 309–332, DOI=
10.1002/smr.v17:5.

• [5] Chapin, N. et al. 2001. Types of software evolution and software
maintenance. Journal of Software Maintenance. 13, 1 (2001), 3–30.

• [6] Eden, A.H. and Turner, R. 2007. Problems in the ontology of
computer programs. Appl. Ontol. 2, 1 (2007), 13–36.

References:
• [7] Godfrey, M.W. and German, D.M. 2008. The past, present, and

future of software evolution. Frontiers of Software Maintenance, 2008.
FoSM 2008., DOI= 10.1109/FOSM.2008.4659256.

• [8] Guizzardi, G. 2005. Ontological foundations for structural
conceptual models. CTIT, Centre for Telematics and Information
Technology.

• [9] Kitchenham, B.A. et al. 1999. Towards an Ontology of software
maintenance. Journal of Software Maintenance. 11, 6 (1999), 365–389,
DOI= 10.1002/(SICI)1096-908X(199911/12)11:6<365::AID-SMR200>3.0.CO;2-
W.

• [10] Mahner, M. 1993. What is a species? Journal for General Philosophy
of Science. 24, 1 (1993), 103–126, DOI= 10.1007/bf00769517.

• [11] Martin, J. 2010. Introduction to Languages and the Theory of
Computation. McGraw-Hill Companies,Incorporated.

• [12] Oberle, D. et al. 2009. An Ontology for Software. S. Staab and D.
Rudi Studer, eds. Springer Berlin Heidelberg. 383–402, DOI= 10.1007/978-3-
540-92673-3_17.

• [13] Osterweil, L.J. 2008. What is software? Autom. Softw. Eng. 15, 3-4
(2008), 261–273.

References:
• [14] Parnas, D.L. 2011. Precise Documentation: The Key to Better

Software. S. Nanz, ed. Springer Berlin Heidelberg. 125–148, DOI=
10.1007/978-3-642-15187-3_8.

• [15] Parnas, D.L. 1994. Software aging. Proceedings of the 16th
international conference on Software engineering (Los Alamitos, CA,
USA, 1994), 279–287.

• [16] RUIZ, F. et al. 2004. An ontology for the management of software
maintenance projects. International Journal of Software Engineering and
Knowledge Engineering. 14, 03 (Jun. 2004), 323–349, DOI=
10.1142/S0218194004001646.

• [17] Swanson, E.B. 1976. The dimensions of maintenance. Proceedings of
the 2nd international conference on Software engineering (Los Alamitos,
CA, USA, 1976), 492–497.

• [18] Tang, A. et al. 2011. Software Architecture Documentation: The
Road Ahead. Software Architecture (WICSA), 2011 9th Working IEEE/IFIP
Conference on, DOI= 10.1109/WICSA.2011.40.

• [19] Tappolet, J. et al. 2010. Semantic web enabled software analysis.
Web Semant. 8, 2-3 (2010), 225–240, DOI= 10.1016/j.websem.2010.04.009.

