An Ontology of Software Evolution
A Research Proposal

Xiaowel Wang

ICT Doctoral School,
University of Trento, Italy
xwang@disi.unitn.if

Dec.2012 e1/28

Outline

e Context and Motivation

Researc

N Problem

Researc

n Approach

Related Work

e Evaluation Plan

e Conclusion

®2/28

1. Context and Motivation

r N Y 2| People rely on software:
“T?J e.g. bank, hospital, government...
<’{Q}‘§> | Software changes rapidly:
k N e.g. Windows xp-> vista-> 7
", £ + | Managing changes is costly:
L | costs over 50% project budget

® Section 1. Context and Motivation >> Section 2 >> Section 3 >> Section 4 >> Section 5 >> Section 6 ® 3/28

1.1 Concept Ambiguity

Requirement

Specification Code ready to run

? ?

The concept ambiguity makes software developing a never
ending Iterating process

® Section 1. Context and Motivation >> Section 2 >> Section 3 >> Section 4 >> Section 5 >> Section 6 ® 4/28

1.2 Knowledge Missing

Shortage in human memory
 Original developers may leave the project
 Current maintainers may forget the details

Shortage in documentation
 Few documents are available
 Documents are out of date

® Section 1. Context and Motivation >> Section 2 >> Section 3 >> Secftion 4 >> Section 5 >> Section 6 ®5/28

2. Research Problem

for concept ambiguity
« 2.1 Concept of software
« 2.2 Concept of software evolution

for knowledge missing
e 2.3 Methods and tools for software evolution

® Section 1 >> Section 2. Research Problem >> Section 3 >> Section 4 >> Section 5 >> Section 6 ®46/28

2.1 concept of software

« Algorithm (e.g. a bubble sorting algorithm)
« Source code (e.g. encoded in Java/C)
 Realization of source code (e.g. the code stored on a hard disk)

« Running process of algorithm (e.g. sorting process running in
a computer)

 Specification document?
« Design document?

To understand software evolution, a deeper understanding of
software itself is necessary and essential.

® Secftfion 1 >> Section 2. Research Problem >> Section 3 >> Section 4 >> Section 5 >> Section 6 ®7//28

2.2 concept of software evolution

e.g. software evolution v.s. software maintenance
« Used interchangeably [5]

« Maintenance subsumes evolution [2]
 Evolution subsumes maintenance [7]

* Terms as “change” or “aging’ are used to avoid
misinterpretations [4], [15]

To clarify the concepts relating to software evolution, thereby
getting a clear understanding of software evolution phenomena.

® Secftfion 1 >> Section 2. Research Problem >> Section 3 >> Section 4 >> Section 5 >> Section 6 ®8/28

2.3 methods and tools for software
evolution

Tools are usually designed as file-based, and this limits the
capability to track the semantics of the changes.

* e.g. CVS (Concurrent Versions System)

Dimension CVS

Time of change Compile-time

Change history Any
Artifact File
Granularity File

To track the changes in software with higher semantics.

® Section 1 >> Section 2. Research Problem >> Section 3 >> Section 4 >> Section 5 >> Section 6 09/28

3. Research Approach

3.1 Ontology of software
3.2 Ontology of software evolution

» 3.3 Language for software evolution

® Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6 ®10/28

3.1 Ontology of software

Thought
(Reference)
% Sorting algorithm

Warm, cuddly
friend

GCD 2" . .
Wgrgd " Sorting algorithm encoded Sorting process in
(Symbol) Thing & inprogramming language a computer
(Referent) (e.g. Java or C)

® Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6 ®11/28

3.1 Ontology of software

(Software Concept)

Syntax Referent

(Software Representation) (Software System)

® Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6 ®12/28

3.1 Ontology of software

Requirement

Layer

Design

Layer / \(Software Concept)

Source Code / \

Layer
Requirement Requirement
Layer Layer
Design Syntax Referent \ Design
Layer \] Layer
Source Code/ \ / Source Code
Layer Layer

(Software Representation) (Software System)

® Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6 ®13/28

3.1 Ontology of software

A
Requirement

Layer

Design
Layer

Source Code
Layer

C/Java

Software Software Software
Abstraction Concept Representation System
layers

® Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6 ®14/28

3.1 Ontology of software

e.g. an email system

Software Representation (Syntax) Software System (Referent)

A goal of managing emails An email application
Design modules of email creating, Activities of creating, receiving
receiving and sending and sending emails

The processes running in a

Source code fulfilling the design
computer

® Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Secftion 5 >> Section 6 ®15/28

3.2 Ontology of software evolution

« Darwin published his memorable book On The Origin of the
Species.

 Software and biological creatures are both living in the
environments which are continuously changing.

 To survive in such continuously changing environments,
software and biological creatures both need to change
themselves to gain better adaptability.

® Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6 ®16/28

3.2 Ontology of software evolution

 Differently from living creature, software has no life.

* It is non-tangible and expressed through representation
languages.

If gene is interpreted as “instructions of features”

 For living creatures, the gene (instruction) is stored in the cells
(body), and the gene can be copied through cell reproduction.

 For software, the specification (instruction) and the source
code (body) are stored separately, and the specification can not
be copied through copying the source code.

® Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Secftion 5 >> Section 6 ®17/28

3.2 Ontology of software evolution

A . Software
Requirement .
Evolution
Layer
Design Soft.ware.
Layer Re-engineering Software
Maintenance

Source Code Software

Layer Re-factoring
Machine Code Software
Layer Adaptation

Abstraction Software
layers

® Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6 ®18/28

3.2 Ontology of software evolution

e.g. versioning numbers

 Traditional versioning numbers are decided by the significance
of changes between releases, but these changes are entirely
arbitrary and up to the author.

« According to our software abstraction layers, the significance
level might be determined as “v 1.2.3”

o 1- Specification number
o 2- Design number
o 3- Source code number

® Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6 ®19/28

3.3 Language for software evolution

Application Domain Machine Domain

Des: Design
SC: Source Code
MC: Machine Code

D: Domain Knowledge

R: Requirement

z Computers (hardware)

(D,S F R)

-

(D,S + R) A (Design + S) A (Source Code + Design)

D

(D,S" - R) A (Design’ - S") A (Source Code’ + Design’)

® Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6 ©20/28

3.3 Language for software evolution

 Levels of representation languages

Level Primitive constructs Interpretation

Logical Predicates Arbitrary

Conceptual Cognitive primitives Subjective

Linguistic linguistic primitives Subjective

® Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6 ©21/28

3.3 Language for software evolution

Y A A
: ' : ' Design Unit
1. M1.2.1 2.
M 1.1.1 M1.1.2 e (module)
7y A A A
--------- : laialaialatalty :“""'"l l““i'“ﬁSource Code Unit
CLLL pu €112 v G120 1y €122 1 (class)

® Section 1 >> Section 2 >> Section 3. Research Approach >> Section 4 >> Section 5 >> Section 6 ©22/28

4. Related Work

* 4.1 Concept of software
e 4.2 Software maintenance/evolution

e 4.3 Methods and tools for software evolution

® Section 1 >> Section 2 >> Section 3 >> Section 4. Related Work >> Section 5 >> Section 6 ®23/28

4.1 Concept of software

Definition of software
« Osterweil [13], Eden [6], Martin [11]

Ontology of software
* Oberle [12], SWORD

Ontology of information object
« METOKIS, IAO

® Section 1 >> Section 2 >> Section 3 >> Section 4. Related Work >> Section 5 >> Section 6 ®24/28

4.2 Software maintenance/evolution

Study in software engineering

 laws of software evolution, software process models, software
configuration management, reverse engineering, refactoring

Metaphor between software and biological evolution
« Mahner [10], Godfrey [7]

Taxonomies of software evolution
« Lientz & Swanson [17], Chaptin [5], Buckley [4]

Ontologies of software evolution
« Kitchenham [9], Ruiz [16], Anquetil [1], Tappolet [19]

® Secftion 1 >> Section 2 >> Section 3 >> Section 4. Related Work >> Section 5 >> Section 6 ®25/28

4.3 Methods and tools for software
evolution

Software documentation
e Parnas [14], [15]

Tools and methods
« Buckley [4], Tang [18], Tappolet [19], Beyer [3]

Language extension based on ontology
« Giancarlo [8]

® Section 1 >> Section 2 >> Section 3 >> Section 4. Related Work >> Section 5 >> Section 6 ®26/28

5. Evaluation Plan

OntoClean methodology

* Imposing several constraints on the taxonomic structure of an
ontology, which could help in eliminating inappropriate and
Inconsistent modeling choices.

Prototype

 Provide a tool with the ontology-based language embedded
« Adapt this tool in a software developing project

« Collect the feedback from stakeholders

® Secftion 1 >> Section 2 >> Section 3 >> Secftion 4 >> Section 5. Evaluation Plan >> Secftion é ®27/28

6. Conclusion

« This project aims at providing an ontology of software, an
ontology of software evolution, and a ontology-base language

« \We try to get a deeper understanding of software evolution
phenomena, thereby facilitating the difficulty in software
evolution.

« \We hope our work could be served as groundwork supporting
other researches in software evolution.

® Section 1 >> Section 2 >> Section 3 >> Section 4 >> Section 5 >> Section 6. Conclusion ®28/28

The end

Tlhamlks!

References:

[1] Anquetil, N. et al. 2007. Software maintenance seen as a
knowledge management issue. Information and Software Technology.
49, 5 (May. 2007), 515-529.

[2] Bennett, K.H. and Rqjlich, V.T. 2000. Software maintenance and
evolution: a roadmap. Proceedings of the Conference on The Future of
Software Engineering (New York, NY, USA, 2000), 73-87, DOI=
10.1145/336512.336534.

3] Beyer, D. and Hassan, A.E. 2006. However, version control systems
VCS) contain valuable historical information about a project, and minin
the VCS repository may reveadl interesting events in the development an
maintenance of long-lived projects. Reverse Engineering, 2006.

WCRE '06. 13th Working Conference on, DOI= 10.1109/WCRE.2006.14.

[4] Buckley, J. et al. 2005. Towards a taxonomy of software change:
Research Arficles. J. Softw. Maint. Evol. 17, 5 (2005), 309-332, DOI=
10.1002/smr.v17:5.

[5] Chapin, N. et al. 2001. Types of software evolution and software
maintenance. Journal of Soffware Maintenance. 13, 1 (2001), 3-30.

[6] Eden, A.H. and Turner, R. 2007. Problems in the ontology of
computer programs. Appl. Ontol. 2, 1 (2007), 13-36.

References:

[7] Godfrey, M.W. and German, D.M. 2008. The past, present, and
future of software evolution. Frontiers of Soffware Maintenance, 2008.
FoSM 2008., DOI= 10.1109/FOSM.2008.4659256.

[8] Guizzardi, G. 2005. Ontological foundations for structural
conceptual models. CTIT, Centre for Telematics and Information
Technology.

[?] Kitchenham, B.A. et al. 1999. Towards an Ontology of software
maintenance. Journal of Sofftware Maintenance. 11, 6 (1999), 365-389,
DOI= 10.1002/(SICI) 1096-208X(1999211/12)11:6<365::AID-SMR200>3.0.CO;2-
W

[10] Mahner, M. 1993. What is a species¢ Journal for General Philosophy
of Science. 24, 1 (1993), 103-126, DOI= 10.1007/bf00769517.

[11] Martin, J. 2010. Introduction to Languages and the Theory of
Computation. McGraw-Hill Companies,Incorporated.

[12] Oberle, D. et al. 2009. An Ontology for Software. S. Staab and D.
RngQSQJrzdfg eds. Springer Berlin Heidelberg. 383—-402, DOI= 10.1007/978-3-
540-92673-3_17.

[13] Osterwell, L.J. 2008. What is softwaree Autom. Softw. Eng. 15, 3-4
(2008), 261-273.

References:

[14] Parnas, D.L. 2011. Precise Documentation: The Key to Better
Software. S. Nanz, ed. Springer Berlin Heidelberg. 125-148, DOI=
10.1007/978-3-642-15187-3_8.

[15] Parnas, D.L. 1994. Software aging. Proceedings of the 16th
international conference on Software engineering (Los Alamitos, CA,
USA, 1994), 279-287.

[16] RUIZ, F. et al. 2004. An ontology for the management of software
maintenance projects. International Journal of Software Engineering and
Knowledge Engineering. 14, 03 (Jun. 2004), 323-349, DOI=
10.1142/50218194004001646.

[17] Swanson, E.B. 1976. The dimensions of maintenance. Proceedings of
the 2nd international conference on Software engineering (Los Alamitos,
CA, USA, 1976), 492-497.

[18] Tang, A. et al. 2011. Software Architecture Documentation: The
Road Ahead. Sofftware Architecture (WICSA), 2011 9th Working IEEE/IFIP
Conference on, DOI= 10.1109/WICSA.2011.40.

[19] Tappolet, J. et al. 2010. Semantic web enabled software analysis.
Web Semant. 8, 2-3 (2010), 225-240, DOI= 10.1016/j.websem.2010.04.009.

