

Relevance-based abstraction identification: technique and evaluation

R. Gacitua, P. Sawyer, and V. Gervasi. Requir. Eng., 16(3):251-265, 2011.

Itzel Morales Ramirez Fondazione Bruno Kessler Trento, Italy

- Introduction
- Problem: discovery of key abstractions in domain docs
- Techniques: automatic term recognition (ATR)
- Evaluation methodology: precision and recall measures
- Discussion & Conclusion

Definitions

- Document is made of tokens ("words")
- Terms are sequences of tokens
- Term is a potential signifier of an underlying abstraction
- Abstraction is a concept with particular significance
- Extraction is the derivation of a set of abstractions from a doc

Motivation

- Usefulness in requirements engineering (RE)
 - Quick understanding of the problem domain
 - Domain expertise contained in documents
 - Abstractions inferred from words or phrases
 - Several useful purposes: project dictionary, validation list, verification of requirements

Problem: discovery of key abstractions

- D: document
- *K:* static sources of knowledge, not dependent on D
- A_D : we want to extract a set of terms
- $\sigma: A_D
 ightarrow R$, measure of significance
- \leq_{σ} ranking, higher values are more significant

$$\forall a_1, a_2 \in A_D, a_1 \leq_{\sigma} a_2 \iff \sigma(a_1) \leq \sigma(a_2)$$

Quality of the set1) Includes all and only significant termsdepends on 2 factors2) Degrees of significance (ranking)

Techniques: ATR

- Relevance-based Abstraction Identification (RAI)
 - Designed to identify terms
 - Use of statistical methods
 - Rank candidate abstractions
 - Techniques used
 - Corpus-based frequency profiling individual words
 - $\circ~\mbox{LL}_{\mbox{w}}\mbox{:}~\mbox{log-likelihood value to determine the significance of words}$

$$LL_w = 2\left(w_d \cdot \ln \frac{w_d}{E_d} + w_c \cdot \ln \frac{w_c}{E_c}\right)$$

Occurrence of word w in k, i.e. corpus, and document

- Syntactic patterns multiword
 - Posit multiword terms as common combinations of adjectives and nouns, adverbs and verbs, and prepositions

RAI-0

- Hypothesis: not all the words contribute equally to the significance value of multiword term of which they are a component
- Significance value for multiword terms
 - Term t = $\langle w_1, w_2, ..., w_l \rangle$
 - \circ *k* : weight to each word based on its position

RAI-0 procedure

- Annotation of words with a Part-of-Speech (i.e. linguistic categories: noun, verb...)
- Filtering of words unlikely to signify abstractions
- Reduction of words to their lemma (e.g. run and running -> run)
- Assignment of LL value to each word, where K= British National Corpus
- Application of syntactic patterns
- Calculation of the significance score for every term (S_t)
- Sorting of terms based on significance value

Evaluation methodology

- Measure of success
 - Existence of a reference set of abstractions A'_D
 - Precision: how many of the abstractions we extracted were relevant

$$Precision = \frac{|A_D \cap A'_D|}{A_D}$$

Recall: how many of the relevant abstractions we could extract

$$Recall = \frac{|A_D \cap A'_D|}{A'_D}$$

 Genuine abstractions: *lag* metric, defined as the average number of false positives (higher significance value)

$$lag = rac{\sum_{a \in A'_D} lag(a)}{|A'_D|}$$
 lower lag -> genuine abstractions

• Relevance-based abstraction identification: technique and evaluation

14 February 2013 • 8

Case study

- D: book on a technical domain, i.e. RFID
- A'_D: analytical index
- D contains 156,028 words
- A'_D has 911 entries
- Simplifying assumption due to the absence of ranking
 - 911 abstractions are of equal importance
 - Recall and precision measures by counting the topmost 5, 10, ..., 20 terms

Hypothesis

t= $\langle w_1, w_2, ..., w_l \rangle$

Evaluation

- Term "RFID tag"
- *k*: constant weight 1.0 vs variable weight •

Relevance-based abstraction identification: technique and evaluation

14 February 2013 • 10

Improvements

- RAI-1
 - It might be defined a richer set of syntactic patterns
 - Solution: combination of corpus-based frequency with raw frequency

$$S'_{t} = S_{t} \frac{termFreq_{D}(t)}{\max_{t' \in A_{D}} termFreq_{D}(t')}$$

Comparison of RAI-1 vs RAI-0, AbstFinder and C-Value

• Relevance-based abstraction identification: technique and evaluation

14 February 2013 • 11

Discussion

- Limitations
 - Book index is a tough test
 - Human judgement is needed
- Threads to validity
 - Lexical similarity does not guarantee semantic relatedness
 - The RFID book is a single, coherent text written by 1 author

Conclusion

- New technique for the identification of single- and multiword abstractions (RAI)
- The implemented tool provides guidance to understand
 the domain
- Investigation of feedback from requirements engineers to filter abstractions or extract further ones

Thank you!

Any questions?

• Relevance-based abstraction identification: technique and evaluation