

# IDENTIFYING CONFLICTS IN SECURITY REQUIREMENTS

Elda Paja, Fabiano Dalpiaz, Paolo Giorgini



February 28<sup>th</sup> 2013

### Outline

#### □ Introduction

- TasLab Case Study
- Baseline: STS-ml
- Formal framework
  - Conflicts among authorisations
  - Conflicts among business policies and security requirements

#### $\hfill\square$ Evaluation

- Findings from the case study
- Scalability study

### Introduction

3

**Conflicting requirements** are requirements that **cannot** possibly be satisfied at the same time

- Requirements are inherently prone to conflicts
  - They originate from different stakeholders with different needs
- □ Security requirements are no exception!
  - Their violation leads to severe consequences
    - Non-compliance: privacy laws infringements, loss of reputation, and monetary sanctions
  - Critical in STS: each actor defines its individual policy independently
- □ Non-compliance is not an option!
  - Coping with such conflicts at requirements-time avoids designing and implementing a non-compliant and hard-to-change system

### Introduction

#### □ The problem



#### □ Challenges

- Conflicts (inconsistencies) not trivial to spot
- Models are often large, cannot be effectively analysed manually

Automated reasoning techniques are needed to identify conflicts among security requirements, and between business policies and security requirements

# TasLab Case Study

- □ Trentino as a Lab: online collaborative platform to foster ICT innovation in Trentino
  - Ongoing project: tax collection and verification in Trentino



### **Baseline: STS-ml**



# Supported security policies

- □ Interaction (security) requirements
  - non-repudiation (3 types): non-repudiation of delegation, of acceptance, of delegation and acceptance; no-delegation; redundancy (4 types): fallback redundancy single, fallback redundancy multi, true redundancy single, true redundancy multi; integrity of transmission availability trustworthiness level
- □ Normative requirements
  - separation of duties, binding of duties: among roles and goals
- □ Authorisation requirements
  - non-usage, non-modification, non-production, non-disclosure, need-to-know, non-reauthorisation

### Formal Framework

- □ A framework to detect conflicts
  - Conflicts not trivial to find
  - Scalability is an issue
- Formal language to support automated reasoning about the expressed security policies (requirements)
- Formally Defined
  - Security requirements supported by STS-ml (derived by the security policies)
    - Are the security requirements (policies) violated in the modelled STS?
    - Key question: Is the specification consistent?
- □ Built on top of DLV
  - Define transformation rules from STS-ml concepts and relations into Datalog predicates
  - Define propagation rules

# Security requirements in STS-ml

#### Interaction (security) requirements

- a property that an actor requires another to comply with, related to a social relationship between them: goal delegation (Del= delegates (A1,A2,G)) or document provision (Prov=provides(A1,A2,D))
- r-not-repudiated-del(A2,A1,Del), r-not-repudiated-acc(A2,A1,Del)
- r-ts-red-ensured(A1,A2,G), r-tm-red-ensured(A1,A2,G), r-fs-red-ensured(A1,A2,G), r-fm-red-ensured(A1,A2,G)
- r-not-redelegated(A1,A2,G)
- r-availability-ensured(A1,A2,G)
- r-integrity-ensured(A1,A2,Prov)
- r-availability-ensured(A1,A2,D)

# Security requirements in STS-ml

#### Normative requirements

a property that the STS – intended as the legal context – requires any participating actor:

- r-not-played-both(STS,A,R1,R2) A cannot play both roles R1 and R2
- r-not-pursued-both(STS,A,G1,G2) A cannot pursue both goals G1 and G2
- r-played-both(STS,A,R1,R2) if A plays role R1 (R2) shall also play R2 (R1)
- r-pursued-both(STS,A,G1,G2) if A pursues goal G1 (G2) shall also pursue G2 (G1) too

# Security requirements in STS-ml

#### Authorisation requirements

a requirement derived from an authorisation relationship Auth=authorises(A1,A2,I,G,OP,TrAuth)



# Identifying conflicts

#### □ Step 1. Authorisations conflict

- Before reasoning on conflicts between Bus. Policies and security requirements
- Ensure authorisations are consistent

An authorisation conflict occurs for every pair of authorisation relationships, if

- (1) Both authorisations apply to the same information, and either
  - i. One authorisation restricts the permission to a goal scope, while the other does not, or
  - ii. The scopes are intersecting, and different permissions are granted (on operations or transferability)



# Identifying conflicts

- □ Step 2. Bus Sec Conflict
  - Over an authorisation consistent STS-ml model
  - Verify if any security requirement is violated by actors' business policies
    - Actors do some action they are required not to do
    - Actors do not perform some action they are required to
- □ But, STS-ml models contain variability
  - Intentional or social relationships define the actions an actor can possibly do
  - Security requirements imply commitments about (not) performing certain actions

STS-ml Variant: defines the exact set of actions actors do carry out to pursue their goals

# Identifying conflicts

| Requirement                                                                   |                                                                                                                      | Verification at design-time                                            |                                                                                                                                                                    | gn-time                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interaction requirements                                                      |                                                                                                                      |                                                                        |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |
| $R_1$ : r-not-repudiated-del( $A_2$ , $A_1$ , Del)                            |                                                                                                                      |                                                                        | No                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |
| $R_2$ : r-not-repudiated-acc( $A_1$ , $A_2$ , $Del$ )                         |                                                                                                                      |                                                                        | No                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |
| $R_3$ : r-ts-red-ensured $(A_1, A_2, G)$                                      |                                                                                                                      |                                                                        | Partial. $A_2$ pursues goals in $V_M$ that define at                                                                                                               |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |
| $R_4$ : r-fs-red-ensured( $A_1, A_2, G$ )                                     |                                                                                                                      |                                                                        | least two disjoint ways to support G                                                                                                                               |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |
| Rs : r-tm-                                                                    | Authorisation requirements                                                                                           |                                                                        |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                    | ments                                                                                                                                                                                              |
| R <sub>6</sub> : r-fm-i<br>R <sub>7</sub> : r-not-<br>R <sub>8</sub> : r-inte | $R_3$ : r-not-ntk-violated $(A_1, A_2, \mathcal{I}, \mathcal{G})$<br>$R_{10}$ : r-not-used $(A_1, A_2, \mathcal{I})$ |                                                                        |                                                                                                                                                                    | ineeds/modifies/produces( $A_2, G, D$ ) ∈ $V_M$ .<br>$D$ makes tangible (part of) $I \in I$ and $G \notin G$<br>ineeds( $\overline{A_2}, \overline{G}, \overline{D}$ ) ∈ $V_M$ . $D$ makes tangible<br>(part of) $I \in I$<br>imodifies( $A_2, \overline{G}, \overline{D}$ ) ∈ $V_M$ . $D$ makes tangi-<br>ble (part of) $I \in I$ |                                                                                                                                                                                                    |
|                                                                               | $R_{11}$ : r-not-modified $(A_1, A_2, I)$                                                                            |                                                                        |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |
|                                                                               | $R_{12}$ : r-not-produced $(A_1, A_2, I)$                                                                            |                                                                        |                                                                                                                                                                    | $\exists produces(A_2, G, D) \in V_M$ . D makes tangi-<br>ble (part of) $I \in I$                                                                                                                                                                                                                                                  |                                                                                                                                                                                                    |
|                                                                               | P                                                                                                                    | Normative requirements                                                 |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |
|                                                                               | R14 : P4                                                                                                             | R <sub>15</sub> : r-not-played-bo<br>R <sub>16</sub> : r-played-both(S | $r_{16}$ : r-not-played-both( $STS$ , $A$ , $R_1$ , $R_2$ )<br>$r_{16}$ : r-played-both( $\overline{STS}$ , $\overline{A}$ , $\overline{R_1}$ , $\overline{R_2}$ ) |                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{l} \{plays(A, R_1), plays(A, R_2)\} \nsubseteq \mathcal{V}_M \\ \{plays(A, \overline{R_1}), plays(\overline{A}, \overline{R_2})\} \subseteq \overline{\mathcal{V}}_M \end{array} $ |
|                                                                               |                                                                                                                      | $R_{17}$ : r-not-pursued-both (STS, $A, G_1, G_2$ )                    |                                                                                                                                                                    | $,G_{1},G_{2})$                                                                                                                                                                                                                                                                                                                    | A is not the final performer for both $G_1$ and $G_2$<br>or their subgoals                                                                                                                         |
|                                                                               |                                                                                                                      | $R_{18}: r	ext{-pursued-both}(STS, A, G_1, G_2)$                       |                                                                                                                                                                    | $,G_{2})$                                                                                                                                                                                                                                                                                                                          | A is the final performer for both $G_1$ and $G_2$ or<br>their subgoals                                                                                                                             |

### **Evaluation**

- $\square$  2 ways to evaluate our approach
  - Show effectiveness of our reasoning applying it to the TasLab Case study
  - Assess efficiency performing a scalability study

### Findings from the case study

#### 16

#### □ Authorisation Conflicts



### Findings from the case study

17

#### $\square$ Bus – Sec Conflicts



# Scalability study

#### 18

Consider the TasLab case study model as a basic building block 

Perform cloning to obtain bigger models 



- Increase the size of the model in 2 ways
  - Augment the number of elements (nodes and relationships) in the model
    - Models with zero variability all decompositions considered AND-Dec
  - Increase the number of variants in the model (reasoning technique relies upon generating STS-ml model variants)
    - Models with zero, medium, and high variability and a considerate number of elements
    - The cloning process itself also influences the model variability!

### **Experimental results**





### **Ongoing and Future Work**

- Devise further analysis techniques to identify conflicts among all types of security requirements
  - For now only authorisation requirements
- Explore possible ways to resolve the identified conflicts
  Perhaps through trade-off analysis or negotiation
- $\square$  Evaluation
  - 2 different industrial case studies
    - Air Traffic Control Management
    - eGoverment

### The end

# Thank you!



Contact: paja@disi.unitn.it



ANIKE TO Seventh Framework Programme (FP7/2007-2013) under grant no 257930 (Aniketos)