
Software as a Social Artifact

Speaker: Xiaowei Wang

Supervisor: John Mylopoulos, Nicola Guarino

University of Trento, Italy
ISTC-CNR, Italy

xwang@disi.unitn.it

1/22 Mar. 12nd 2014

A Requirements Engineering Perspective

Background and Motivation
• Software is used in every aspect of human activity

• Ambiguous terminology is used in the SE community

• Software is difficult to maintain and has a high

failure rate the in the practice

• We try to answer the questions, what is a software,

and how to identify the same software under

several changes

2/22

State of the Art
• Software as a general concept [Osterweil, 08]

 He characterizes software as something non-physical and

intangible, a software instance could be executed to manage

and control tangible entities

• (Computer) Software in common sense

 Four concepts are ambiguous in the literature:

1) code, the instruction for a computer;

2) copy, the realization of instructions through hard media;

3) media, the hardware media itself;

4) execution, the execution process of the copy.

3/22

Understanding of Software
• Duality [Moor, 78] [Colburn, 00]

 They believe that software is both the code with the “copy +

media” (e.g. CD with code) or the code with the execution

(running process or thread in a computer) at the same time

• Distinguishing the entities [Oberle, 2005]

 SoftwareAsCode: an InformationObject, the expression

with both syntax and semantics;

 ComputationalObject: the physical realization of such

code in a concrete hardware, but not the hardware;

 ComputationalActivity: the result of the execution of a

computational object.

4/22

Software as Artifact
• Software is-A (Expression and Artifact) [Kassel, 07]

 A program is considered as both a computer language

expression and an artifact of computation

• Software/program as Artifact different from code,

copy, media and execution [Irmak, 13]

 1) We share very much Irmak’s intuitions;

 2) questions are left open by them:

 how software changes,

 what identity conditions for software are, and more.

5/22

Code vs Program
• A code could be an non-artifact

 e.g. the code could be the result of the input of a

monkey randomly pressing the buttons

• A program must be an artifact

 e.g. the program must be created under human

intention, such as a program created for sorting a list

of numbers

6/22

What is a Bug
• To understand the different between code and

program, we can check the meaning of a bug

 We can NOT say a code has a bug, as long as it is

accepted by a computer. The computer just loyally

parses the code and executes the instruction.

 We CAN say a program has a bug, as the

execution result of the program is not intended by

human.

7/22

What is a Bug
• Program1: print the value of the first variable

• Code1: Int a=0, b=1; print b;

• Code2: Int a=0, b=1; print a;

 The computer doesn’t know which piece of code is
intended by the human.

 We would like to say that Program 1 is a buggy
program when it is constituted by Code1, and
Program 1 is correctted when Code 1 is substituted by
Code 2.

(note: detail artifact creation process is neglected here)

8/22

The Intention
• It is the intention makes the program as an artifact

different from a code, and Irmak stops here, leaving

the identity of software/program as an open

question.

• To answer this question, we dive into the concept of

intention based on Zave and Jackson’s proposal

about requirement and specification in view of

world and machine.

9/22

Zave&Jackson’s Theory

10/22

World Phenomena

Machine Phenomena

Requirement

(External)
Specification

(Internal)
Specification

Problem Domain

Solution Domain

This is a general view about the World&Machine, when the machine
is a computer-driven machine, we can start to discuss about computer software.

11/22

Code
• Description: Sequence of instructions, expression

according to a programming language.

• ID criteria: Syntactic Structure

• Explain:

 Two codes are identical if and only if they exactly
have the same syntax.

 New codes created from the changes including
variable renaming, order changes in declarative
definitions, inclusion and deletion of comments, etc.

• (notes: Relations among the code, copy, media and

execution were discussed in previous slides)

12/22

Program
• Description: Artifact constituted by code

• ID criteria: intentional creation, internal specification

• Explain:

 By checking the meaning of a bug, we have already
known that the internal specification as the content of the
intention identifies a program, focusing on the phenomena
inside a machine, whose constituent could be different
codes.

 Another example shows the program historically
depends on the intentional creation: different programs
with same code and same internal specification
developed by Microsoft (MS) or by a individual student. As
two creation events raised.

13/22

Software System
• Description: Artifact constituted by program

• ID criteria: intentional creation, external specification

• Explain:

 The software system historically depends on an

intentional creation, but the constituent is program, so

the constitution relation is chained together.

 By pointing to different kinds of specifications, we

move our abstraction layer up to another level that

the software system doesn’t care about the internal

machine states, only focuses on the interactions

between the World and Machine.

14/22

Software (Product)
• Description: Artifact constituted by software system

• ID criteria: intentional creation, core requirement,
commitment, social structure

• Explain:

 Following the constitution chain, by assuming a software
(product) is an artifact constituted by software systems
(indirectly constituted by code), we move the abstraction
layer of the concept to the top level, focusing on world
phenomena.

 Besides the identity criteria of the intentional creation,
the core requirements of a software system are essential
which can't be changed for keeping the identity of the
software.

15/22

Commitment
• Besides the intentional creation and core

requirement, we still need to consider the constant

dependence to a social commitment to the core

requirements.

• e.g. Skype doesn’t change after it is purchased by

MS, as MS inherits the commitment to ensure the

core requirement is fulfilled. To the user of Skype,

there is no different before and after this purchase.

16/22

Social Artifact
• In other words, a software system generally

depends on a social structure which consists of

several social roles.

• For example, a software could be developed by

single agent and used by the same agent, which

meaning the intentional creation, requirement, and

the commitment only refer to a single agent.

• But by bring the social structure concept, we can

derive that there are always a developer role and

user role for the software, although it is developed

and used by the same person.

17/22

Practical usage
• A simple usage of our work could be a refined

terminology for different kinds of software changes:

1) Refactoring refers to the creations of new codes,

keeping the identity of the program;

2) re-engineering refers to the creations of new

programs, keeping the identity of the software system;

3) software evolution refers to the creations of new

software systems, keeping the identity of the software

(product).

18/22

Practical usage

• If we propose a versioning number criterion

according to our software abstraction layers, the

significance level could be determined

• e.g. v 1.2.3.4:

 1 - requirement number;

 2 - external specification number,

 3 - internal specification number,

 4 - code number.

19/22

Practical usage
• As another practical result of this approach, the

refined versioning number method provides the

possibility of developing new software versioning

control tools with high level semantics describing

software changes.

• Traditional tools only focus on the changes in the

codes, but according to our work, software could

be consistently expressed and tracked in multiple

abstraction layers (e.g. code, program, software

system, software product).

20/22

Conclusion

21/22

• Provided an answer to the question “what is the
identity criteria of software”

• We treated a software as a social artifact

• Several concepts are clarified in a core ontology of
software: code, program and software system and
software product

• These concepts were organized into a consistent
abstraction layer structure

Future work

• An ontology of software expressed in OWL or other

description logics with full axioms and thermos

• An ontology of software evolution

• Tools and methodology for software maintenance

22/22

The end

