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Abstract—Goal models capture stakeholder requirements for
a system-to-be, but also circumscribe a space of alternative
specifications for fulfilling these requirements. Recent proposals
for self-adaptive software systems rely on variants of goal models
to support monitoring and adaptation functions. In such cases,
goal models serve as mechanisms in terms of which systems
reflect upon their requirements during their operation. We argue
that existing proposals for using goal models at runtime are
using design artifacts for purposes they were not intended, i.e.,
for reasoning about runtime system behavior. In this paper,
we propose a conceptual distinction between Design-time Goal
Models (DGMs)—used to design a system—and Runtime Goal
Models (RGMs)—used to analyze a system’s runtime behavior
with respect to its requirements. RGMs extend DGMs with
additional state, behavioral and historical information about the
fulfillment of goals. We propose a syntactic structure for RGMs,
a method for deriving them from DGMs, and runtime algorithms
that support their monitoring.

Keywords—Runtime goal models; Requirements at runtime;
Goal reasoning; Self-adaptive systems.

I. INTRODUCTION

The past decade has seen a dramatic rise in interest
in software systems that monitor their environment and, if
necessary, adapt in order to continue to fulfill their require-
ments. In the context of Requirements Engineering (RE), such
work goes back to the seminal contributions by Fickas and
Feather [1], [2], followed by several comprehensive proposals
for automated monitoring of requirements [3], [4], [5], based
on different languages and formalisms (including the Event
Calculus and variants of Temporal Logics).

The pivotal role of requirements during the post-
deployment phase of a system’s lifecycle has recently been
emphasized by foundational research on requirements at run-
time [6], [7], and self-adaptive systems [8]. The challenge for
us is to create an artifact from requirements that supports
(i) analysis to determine whether system operations are in
accordance with its specification; and, when needed, (ii) explo-
ration of alternative system configurations that restore normal
operations and continuing fulfillment of requirements. In this
paper we address the first challenge, showing how to create
a runtime artifact from requirements allowing for monitoring
and diagnosis.

Some existing approaches (e.g., [5], [9], [10]) rely on
early requirements models, often variants of i*goal models
[11], which are insufficiently detailed to effectively express
(un)desired system behavior. Early requirements models talk
about stakeholder goals and needed functionality for the
system-to-be (e.g., sending e-mail), and can play a key role

in communicating between various stakeholders by abstracting
details that are irrelevant at this level. Requirement models are
also useful for choosing among design alternatives.

However, at runtime, system behavior is characterized by
events occurring in the world, related to goal instances (e.g., an
e-mail has been sent from X to Y for purpose Z at some point
in time). Some approaches (e.g., [4], [12], [13]) adopt low-level
specification languages, resembling programming calculi, to
express behavior. These are easy to monitor, for they capture
actual program behavior, but are difficult to trace back to
original stakeholder requirements.

We provide a framework for bridging the gap between
design-time goal models and runtime behavior. Starting with
an early requirements model representing stakeholder goals
(Design-time Goal Model or DGM), we refine it with addi-
tional behavioral detail about how goals are to be achieved.
Specifically, we add constraints on valid orderings for pursuing
subgoals, thereby creating a Runtime Goal Model (RGM). Al-
though this information helps us to express additional desired
runtime behavior, this model is still at the class level, while
we really need to reason over multiple goal instances.
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Fig. 1. A partial DGM for an ATM system, adapted from [5]. Goals (oval
shapes) are refined via AND/OR refinement links to tasks (hexagons), i.e.,
functionalities for the system-to-be

We elucidate the need to distinguish between classes and
instances using the partial DGM for an Automated Teller Ma-
chine (ATM) system (Figure 1) adapted from [5]. The model
is informative at the class level, as it conveys information
about required functionality for the system-to-be. However,
when used at runtime, it does not explain when and how
many instances of the goals and tasks in the model need to be
created, nor how many have been created. For example, putting
in cash (task T2) may be unnecessary for starting the ATM
(achieving goal G2), if enough money is already available.
In such situation, no instance of T2 is needed to achieve



an instance of G2. Moreover, between the start and the shut
down of the ATM (goals G2 and G10), many instances of G3

may be achieved to serve different customers. The model does
not include this information. Previous work (see Section VI)
has used isomorphic copies of a DGM at runtime, thereby
restricting the space of behaviors that are consistent with
the given requirements model. For instance, the isomorphism
assumption between goal classes and instances does not allow
the behaviors noted above for the ATM goal model.

The runtime behavior for goal instances can be reported via
a “trace”, given in terms of events for leaf-goals/tasks, (e.g.,
〈 goal1.start, goal1.succeed 〉 where 〈 goal1 〉 is an instance of
some goal class G), representing a particular run of a system
intending to make progress toward system requirements. To
connect instance-level traces and class-level RGMs, we intro-
duce Runtime Goal Instance structures (RGI) that allow us to
reason over runtime behavior relative to design-time concepts.
Specifically, RGIs support reasoning about (i) current goal
instances, (ii) their behavior (e.g., relative ordering of instance
events), and (iii) the state in which each instance is currently
in (being pursued? successfully completed?). From this, one
can answer more general questions for supporting monitoring
and adaptation, e.g., “How many instances of class G3 are
there? How many have successfully completed? How many
have failed?”.

Specifically, the contributions of this paper are as follows:

1) Based on goal-oriented requirements models, we
study the relationship among Design-time Goal Mod-
els, their enriched version (Runtime Goal Models),
and Runtime Goal Instances.

2) We devise a method for enriching a DGM to obtain an
RGM. Our method ensures that the RGM developed
is consistent with its DGM counterpart.

3) We propose reasoning mechanisms to project the
execution of a running system—represented by its
trace—on Runtime Goal Instances for a given RGM.
These mechanisms enable monitoring of the state of
multiple goal instances.

4) We evaluate our approach by illustrating how the
events in a possible trace of a meeting scheduler lead
to different updates in the RGI for the system.

Organization. Section II motivates our work with the help
of the meeting scheduler scenario. Section III presents our
method for deriving RGMs from DGMs. Section IV introduces
our reasoning mechanisms. Section V shows different updates
in an RGI through several runtime scenarios. Section VI
contrasts our approach to related work, while Section VII
discusses our approach and presents future directions.

II. PRELIMINARIES, WITH MOTIVATING EXAMPLES

Goal models such as i* [11] and KAOS [14] capture high
level stakeholder requirements, and refinement/influence rela-
tionships, indicating what combinations of tasks can achieve
desired goals. In this paper, we refer to such goal models as
Design-time Goal Models (DGMs), to indicate their role in
exploring and analyzing design alternatives, each consisting
of a collection of tasks through which root-level goals can
be fulfilled. We illustrate DGMs on the meeting scheduler
exemplar [15] (Section II-A), then point out their limitations

in supporting runtime system monitoring and adaptation and
suggest extensions (Section II-B).

A. DGM for a meeting scheduler

Figure 2 shows a partial DGM for a meeting scheduler.
We use a simple version of goal models [16] that includes
functional (hard) goals only (no softgoals), AND/OR refine-
ments, and influence/contribution relationships. This language,
formalized in Definition 1, suffices to highlight the different
concerns that arise between design-time and runtime goal mod-
els. We do not consider softgoals in this paper. Understanding
their role at runtime is part of our future work.
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Fig. 2. A partial DGM for a meeting scheduler

In Figure 2, the top-level goal is to provide meeting
scheduling services (G1). To do so, the system has to schedule
meetings (G2), send reminders (G3), cancel meetings (G4),
and ensure these functionalities are provided via a running
website (G5). Meetings are scheduled by collecting participant
timetables (G6), choosing a schedule (G7), and choosing a lo-
cation (G8). There are different ways for collecting timetables:
sending text messages to mobile phones (G9), calling partici-
pants by phone (G10), e-mailing them (G11), or retrieving their
online calendar (G12). Some goals influence other goals. For
example, retrieving calendars influences positively the booking
of a convention center, for it eases matching the participants’
calendars with room availability. This model is a useful tool
for analysts to explore alternative functionalities for fulfilling
the top-level goal, also for understanding influences between
goals. This model intentionally abstracts away certain details,
such as the order in which subgoals are to be fulfilled (e.g., G2

should occur before G4), or repetitions (e.g., G10 may have to
be repeated a few times until contact is made).

Definition 1 (DGM). A Design-time Goal Model (DGM) is
a directed graph, (G ,R ), where G is a set of goals (nodes),
and R is the set of edges. R is partitioned into two subsets:
Refinements and Influences edges. The latter are labeled with
a strength value that indicates to what extent the fulfillment
of one goal contributes to the fulfillment of another: strongly
positive (++), weakly positive (+), weakly negative (-), strongly
negative (- -). The goal nodes G may belong in one of two



disjoint groups: AND-nodes and OR -nodes . An AND-node
(OR -node) is considered fulfilled if all nodes (at least one
node) with refinement edges pointing to it are (is) fulfilled.

We require that 1) there be exactly one root node, and 2)
every node have at most one incoming refinement edge and
there are no refinement cycles (i.e., refinements form a forest,
not a graph).

Leaf-level (unrefined) goals are called tasks. �

B. Monitoring meeting schedulers at runtime

We argue that DGMs are in some ways too abstract to
enable runtime monitoring of requirements. We illustrate their
limitations through examples from Figure 2, aiming to answer
questions about the relationship between the behavior of an
executing system and its DGM.

The first and most basic question at runtime is Q1: “Is
observed behavior compliant with the system specification?”
A follow-up question is Q2: “How does system behavior relate
to the fulfillment of stakeholder (root-level) goals?” If some
goals are violated, one may ask Q3: “Can the system switch to
an alternative behavior to restore fulfillment?” These questions
can be projected over temporal frames. For example, Q4:
“What is the percentage of success for a given goal during
the last month?”, or Q5: “What is the trend for failure of a
given goal in the last week?” These questions constitute the
bread-and-butter of feedback loops for adaptive systems.

In this paper, we are primarily concerned with Q1 and Q2.
The key to answer these questions is to observe that there is a
conceptual link between DGMs and system behavior, in terms
of task classes and their instances:

• A DGM provides a high-level specification for a
system in terms of alternative sets of tasks that the
system should implement to fulfill the top-level goal.
Tasks, and goals in general, are expressed at the
class level, e.g., “G18 : Mail Sent”, “G19 : Response
Processed”.

• The execution of a system defines a trace of events
involving task instances. We assume that these events
form a total order that we call a task trace. The
sequence τ1 = 〈 g18.start, g18.succeed, g19.start 〉 is
a task trace where task instance g18 of class G18

starts and subsequently succeeds (indicating that an
individual e-mail was sent, e.g., to Bob for the ex-
ecutive board meeting next Friday), and then task
instance g19 of class G19 starts (Bob’s response is
being processed).

The basic question Q1 can then be refined to: “Does a
given task trace, consisting of events concerning task instances,
comply with a DGM specification, which is about task/goal
classes?” Although we can map task instances to design
classes, key information concerning the runtime traces cannot
be mapped to existing DGMs. Such information may distin-
guish between system success or failure. Specifically, DGMs
do not express information concerning behavior (ordering) or
possibilities for multiple instances.

Problem 1 (Behavior). The events concerning individ-
ual tasks may be interleaved in a trace. For instance,

τ2 =〈 g18.start, g19.start, g18.succeed 〉 is a possible trace.
However, DGMs do not impose any ordering among sub-
goals/tasks. Notice that, in τ2, the response to an e-mail is
processed before the original e-mail was sent! We would like
to proscribe this. �

Problem 2 (Multiple instances). Multiple instances of the
same task class may appear in a single trace. For example,
we may expect instances g18-1 and g18-2 of class “G18 :
Mail Sent” to occur, one for each participant in the meeting.
However, DGMs do not indicate if multiple instances of the
same class can occur in one trace, or how many instances
can be pursued concurrently. �

Our solution to these two problems consists of enriching
DGMs with annotations that describe behavior, e.g., the possi-
ble ways through which combinations of tasks can lead to the
fulfillment of root-level goals, but without providing the full
details of a program. The outcome of this enrichment process
(described in Section III) is a Runtime Goal Model (RGM).
RGMs enable more granular specifications of system behavior.
However, they are still at the class level, while runtime traces
are at the instance level.

Problem 3 (Goal state and life-cycle). Task and goal instances
are inherently stateful. Inspired by prior work in goal mod-
els [17], [18], we capture this by viewing instances as having
a history of state transitions (“events”)—as in Figure 3—that
lead to the current state. RGMs are not expressive enough to
represent and reason about multiple stateful goal and task in-
stances, because they consist of classes, not instances. For ex-
ample, given trace τ3 =〈 g18-1.start, g18-1.susp, g18-2.start 〉,
how would one show the existence of two instances of G18,
the former in state waiting, and the latter in state running? �

start

suspend
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initial running

waiting

succeeded

failed

succeed

fail

Fig. 3. State diagram for goal instances

We abbreviate event names g.suspend , g.resume and
g.succeed to g.susp, g.resm and g.succ. We use predicates
initial?, failed?, running?, waiting?, succeeded? to determine
what state a particular goal instance is in.

To overcome the third problem, we introduce a runtime
artifact for representing and reasoning about requirements,
which we call a Runtime Goal Instance (RGI). An RGI is
a tree structure whose nodes are goal and task instances:

• An RGM can be considered as the schema for a
collection of RGIs: the goal instances in the RGI are
structured according to the refinement relations of the
corresponding RGM. For example, an RGI for trace
〈 g18.start 〉 would have a node for task instance g18,
and its parent would be an instance of goal G11,
because G11 is refined to G18 in the corresponding
design-time goal model.



• RGIs are not necessarily isomorphic to RGMs, since
they support multiple instances of the same class. For
example, given trace 〈 g18-1.start, g18-2.start 〉, there
would be two nodes for instances of G18 in the RGI,
and they could share the same parent.

• Unlike nodes in DGMs and RGMs, nodes in
an RGI keep track of the state reached by the
task or goal instance. For instance, given trace
〈 g18.start, g18.succeed 〉, the node for g18 would be
in state succeeded.

In Section IV, we will formalize RGIs and provide algo-
rithms to derive and update them from the events in a task
trace.

III. FROM DESIGN- TO RUNTIME GOAL MODELS

We propose a process that analysts can carry out for
enriching DGMs in order to obtain RGMs:

1) The analyst decides that some alternatives will not
be implemented (Section III-A). This activity corre-
sponds to the traditional design-time usage of goal
models (e.g., [19], [20]).

2) Annotations concerning runtime behavior are added
to specify sequencing and cardinality constraints
among goal and task instances (Section III-B).

3) Some influence relationships are converted to tempo-
ral constraints on runtime traces (Section III-C).

We are introducing a refinement process for goal models. The
activities in the process restrict the space of admitted behaviors
that a system can exhibit while remaining compliant with
its requirements. Moreover, no additional alternative is added
during the refinement process. We provide a definition and
example of an RGM in Section III-D, illustrating the results
of the enrichment process using our running example.

Notation. Identifiers with a leading mathematical calli-
graphic typeset letter are sets (e.g., G is a set of goals).
Identifiers with a leading uppercase letter are classes (e.g., G
is a goal class). Identifiers with a leading lowercase letter are
instances (e.g., g is a goal instance).

Terminology. Henceforth, a trace is a sequence of events
concerning task and goal instances, while a task trace involves
task instances only. Given a trace τ and an instance g,
let filterHistory(g, τ) be a function that returns the ordered
subsequence of τ consisting of events of the form g. . A
trace τ is valid if and only if for all instances c appearing
in it, filterHistory(c, τ) causes only valid transitions in the
diagram in Figure 3. Thus, 〈 g.start , g.succ, g′.start 〉 is valid,
while 〈 g.succ, g.start 〉 and 〈 g.start , g.succ, g.start 〉 are not.

A. Making choices at design-time

Choosing among alternative requirements is an important
part of an RE process. Such choices rely on the decision-
making skills and the expertise of analysts, which compare
various alternatives, in consultation with end-users. Our pro-
cess suggests, as a preprocessing stage of DGMs, the use of
traditional analysis techniques [21] to make choices and rule
out some alternatives. Henceforth, we assume that this has been
done, and that the DGM we are given reflects this pruning.

Example 1 (Design-time decisions). The analyst examines
the identified partial negative influence relation between G10

and G17: calling participants to obtain their timetables makes
it more difficult to arrange a web meeting, for the meeting
organizer software has no way to retrieve their calendars in
digital format. The stakeholders suggest excluding the option
of web scheduling a meeting (G17). Moreover, the stakeholders
do not like the idea of sending texts to their employees, due
to recent privacy concerns in the organization. Thus, goal G9

is removed too. �

B. Adding annotations for constraining runtime traces

We have argued earlier for the need to analyze traces of
individual tasks/goals, and events involving them. We present
here a set of enrichments to a DGM that prescribe allowable
behaviors of the system-to-be at runtime. We introduce “goal
expressions”, which allow (restricted) specification of the
runtime behavior of a system in terms of how different system
tasks and goals interact one with another.

Definition 2 (Goal expression). A goal expression is a formula
E over a set of goal class identifiers that adheres to the syntax
(akin to regular expressions) in the first column of Table I. �

Each such expression denotes a set of well-formed traces,
according to column three of Table I, extending the standard
approach for regular expressions. The ‘a’ operator used in Ta-
ble I is concatenation of sequences; e.g., 〈 t1.start 〉a〈 t1.succ 〉
equals 〈 t1.start , t1.succ 〉. The ‘�’ operator is interleaving
(shuffling) of sequences. A sequence Z is a shuffle of two
sequences X and Y if and only if there is a way to partition
the symbols of Z into two strings (preserving their relative
order) to produce X and Y . For example, 〈 ev1, ev2, ev3, ev4 〉
is a shuffle of 〈 ev1, ev3 〉 and 〈 ev2, ev4 〉. Moreover, since we
are mostly interested in the successful completion/achievement
of tasks/goals, we abbreviate Gsucc to G in goal expressions.

As part of building an RGM, given a DGM, we associate
with each non-leaf goal, a goal expression annot(G)—called
its goal annotation—that is intended to describe, for any
instance g of G, the expected behavior of the instances of
subgoals of G. For example, annot(G)=G1;G2 describes that
one instance of G1 shall occur successfully, followed by one
successful instance of G2.

We require that every annotation complies with the follow-
ing rules:

A1. Each subgoal appears in at least one allowed trace.
Annotations are added to a pruned goal tree wherein
all tasks have to be implemented by the system. If
a subgoal appears in no trace, then a kept design
alternative (Section III-A) will never be used by the
system.

A2. Annotations should not allow for empty traces. An
empty trace is trivially satisfied. Therefore, the refined
goal would be satisfied without doing any action,
which contradicts the refinement to subgoals or tasks;

A3. The annotations for AND-refined goals should allow
for at least one trace of children instances where
all subgoals appear. This rule preserves the intuitive
meaning of refining an entity to its constituent parts;



TABLE I. SYNTAX AND DENOTATION OF GOAL EXPRESSIONS

Expression E Meaning Denotation L(E) as set of traces
skip Do nothing {〈 〉}
E1 ; E2 Sequential occurrence {uaw | u ∈ L(E1), w ∈ L(E2)}
E1 | E2 Alternation (exclusive choice) L(E1) ∪ L(E2)
opt(E) E is optional L(skip | E)

E+ One or more sequential occurrences of E (iterated concate-
nation) L(E | E;E | (E;E);E | . . . )

Gsucc An instance of G starts and terminates in state succeeded
⋃

g∈G

L(〈 g.start 〉; opt(〈 g.susp, g.resm 〉+); 〈 g.succ 〉)

Gfail An instance of G starts and terminates in state failed
⋃

g∈G

L(〈 g.start 〉; opt(〈 g.susp, g.resm 〉+); 〈 g.fail 〉)

try(G)?E1 : E2 If an instance of G succeeds, an E1; otherwise, an E2 L(Gsucc ;E1) ∪ L(Gfail ;E2)
E1 # E2 Interleaved occurrence of E1 and E2 {u� w | u ∈ L(E1), w ∈ L(E2)}

E# One or more instances of E occurring concurrently (iterated
shuffle) L(E | E#E | (E#E)#E | . . . )

Below, we illustrate our goal annotations through examples.

Two fundamental system behaviors are sequentiality and
interleaving (see Problem 1). Our language supports them
through the ‘;’ and ‘#’ operators, respectively.

Example 2 (Sequencing and Shuffle). Goal G2 (meeting
scheduled) in Figure 2 is refined to G6 (timetables collected),
G7 (schedule chosen), and G8 (location chosen). A possible
goal annotation for G2 may specify that an instance of
G6 shall be achieved first, followed by (;) the interleaved
fulfillment (#) of schedule allocation and location choice.
Formally, annot(G2) = G6; (G7#G8). �

Our language supports alternatives (annotation ‘|’), to ex-
press that the system can exhibit different behaviors. Moreover,
it also supports an annotation, try, in the spirit of if-then-else.
It specifies that the system should try to achieve a goal and,
depending on the success of failure, different behaviors are
expected.

Example 3 (Alternatives and Try). Take the subgoals of G6

that were not pruned in Section III-A: calendars can be
collected by calling participants (G10), e-mailing them (G11),
and retrieving their calendars online (G12). One may specify
that the system should either send e-mails (G11) or retrieve
online calendars (G12). Moreover, if e-mails do not work out
due to some reason, participants are called (G10). Formally,
annot(G6)= (try(G11) ? skip : G10) | G12. �

Sometimes goals are refined in a way that subgoals could
have more than one instance. Our language supports multiple
instantiation (see Problem 2) through iterated concatenation
(‘E+’)—multiple instances of E in sequence—, iterated shuf-
fle (‘E#’)—multiple instances of E interleaved—, and the
optional operator (opt(E))—zero or one instance of E.

Example 4 (Multiple instances). Consider goal G11 (Partic-
ipants e-mailed). Its subgoals mail sent (G18) and response
processed (G19) can be related through iterated shuffle, i.e.,
they have to be repeated multiple times (for each participant),
and their instances can be interleaved (i.e., there is no need
to wait for a response before contacting another participant).
Moreover, the system shall accommodate the fact that a
response may not arrive (hence, G19 is optional). Formally,
annot(G11)= (G18; opt(G19))

#. �

C. From influence relationships to temporal constraints

There is no consensus on how influence/contribution rela-
tionships shall be used at runtime. Some approaches (e.g., [10],
[18]) use contributions to softgoals in order to choose among
alternative sets of tasks. However, in DGMs, influence relations
can apply to (hard) goals and tasks too.

We propose that the analyst decides which influence re-
lationships are retained at runtime, and has to interpret these
relationships as two types of temporal constraints:

• requires(G1, G2) is obtained from a positive influence
from G2 to G1; it indicates that an instance of G1 can
occur only if an instance of G2 has already occurred.

• prevents(G1, G2) is obtained from a negative influ-
ence from G1 to G2; it indicates that the occurrence
of an instance of G1 prevents that of an instance of
G2.

Since an RGI can contain many instances of an individual
RGM goal class, we need to specify between which instances
the constraint applies to. We want to ensure that only related
goal instances, i.e., being pursued in the same scope, are
affected. To do that, given a constraint between G1 and G2,
we determine the lowest common ancestor G of the two goal
classes in the RGM, and we define that the constraint applies
only to instances of G1 and G2 in the subtree of the same
instance of G. We illustrate this intuition in the following
examples.

Example 5 (Requires). We can map influences(G12, G15,+)
to requires(G15, G12), indicating that if the system tries to
book a convention center, it must have already attempted to
retrieve the participants’ online calendars. The lowest common
ancestor of G12 and G15 is G2 (meetings scheduled). Thus,
the constraint applies only to convention center bookings and
calendars retrievals that relate to the same instance of G2 (i.e.,
to the same meeting scheduling). �

Example 6 (Prevents). The relation influences(G14, G23, - -)
can be mapped to prevents(G14, G23), indicating that if the
system tries to execute the algorithm, it should not attempt to
cancel another meeting afterwards. Again, the lowest common
ancestor is G2, and, thus, the constraint applies in the context
of the scheduling of one individual meeting. �



D. Runtime Goal Model

An RGM is a refined DGM wherein all goals are to be
fulfilled by the system, and a set of annotations specifies
how goal instances may be sequentialized at runtime. In an
RGM, all refined goals are provided with an annotation using
the language introduced in Section III-B, and requires and
prevents relationships are added as explained in Section III-C.
Figure 4 shows an RGM for the DGM of Figure 2.

Definition 3 (RGM). Given a DGM M = (G ,R ),
an RGM for M , written as RM , is a 4-tuple
(M, annot(), requires(), prevents()) where

• annot() is a total function from {G | G ∈ G , G ∈
AND nodes ∪ OR nodes } to goal expressions over
G such that annot(G) complies with the rules A1–A3

in Section III-B;

• requires(G1, G2) is true only if influences(G2, G1, s)
∈M , for s ∈ {+,++};

• prevents(G1, G2) is true only if influences(G1, G2, s)
∈M with s ∈ {−,−−}. �
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Fig. 4. Visualization of an RGM based on the DGM of Figure 2

IV. SYSTEM DIAGNOSIS WITH RGMS AND RGIS

We provide algorithms to interpret a task trace from a
running system in terms of its goals. Guided by a given RGM
as input, our algorithms construct an RGI from the task trace in
an incremental manner. Being incremental means that, given an
RGI and an event, the RGI is updated without re-processing
the events that have occurred before the latest. Before pre-
senting our algorithms in Section IV-B, we formalize RGIs
(which we motivated and informally described in Section II)
in Section IV-A.

A. Runtime Goal Instances (RGIs)

Intuitively, given a task trace τ and an RGM, an RGI for
them is a tree whose interior nodes are instantiations of goals
in the RGM which “explain” why tasks are being carried out

in terms of the original DGM. The DGM loosely restricts the
kinds of instances that can appear as children of g in the tree:
they must be instances of the refinements of g’s goal type.
The annotations in the RGM further constrain the histories
of children, and how they are intertwined. Thus, we need to
associate with a node a trace of its children’s behavior (this
cannot be reconstructed from the history of each individual
child, because we allow interleaving). Formally:

Definition 4 (RGI). A tree iM is an RGI for an RGM RM =
(M, annot(), . . . ) if, for every node g in iM :

• id(g) is a unique goal/task instance identifier;

• type(g) is a goal/task class in M ;

• children(g) is the sequence (possibly empty) of the
child nodes of g in the tree;

• state(g) is a state in the lifecycle diagram in Figure 3;

• chnTrace(g) is a trace of events involving only the
instances in children(g);

• the root of the tree iM has type the root goal of M .

An RGI iM is said to be valid if for every node g in it:

1) type(g) is the goal or task class in M of which g is
an instance;

2) chnTrace(g) must be a valid trace (see Section III);
3) all the instances c in children(g) must appear in at

least one event in chnTrace(g);
4) for every node g′ in children(g), type(g′) appears in

annot(type(g));
5) chnTrace(g) is an initial subsequence of some trace

in L(annot(type(g)));
6) for every node g′ in children(g), the history

filterHistory(g′, chnTrace(g)) must lead to state(g′)
according to the transition diagram in Figure 3. �

B. Interpreting task traces on an RGI

We provide algorithms to construct and update an RGI
based on a task trace τ and a specific RGM RM . Our
algorithms propagate the successive events in τ in a bottom-
up fashion. The output (an RGI) is the artifact that enables
answering questions Q1 and Q2 in Section II.

We propose deterministic algorithms, which interpret the
events in τ in terms of a unique instance iM of RM . In general,
our annotations may lead to different interpretations of a given
τ . For example:

• Given annot(G)= G+
2 ;G

+
2 , and given a trace

〈 g2.start , g2.succ, g′2.start , g′2.succ, g′′2 .start ,
g′′2 .succ 〉, we cannot tell if g′2 belongs in the first or
second G+

2 in annot(G).

• Given annot(G)= (G1#G1), annot(G1)= G2;G2,
and given a trace 〈 g2.start , g′2.start 〉, we cannot tell
if g2, g′2 belong to the same instance of G1 or not.

The issue is well-known in AI plan recognition, and
solutions exist [22]. We assume that proper disambiguation
strategies are adopted to (i) identify a unique parent for a
given task or goal instance, and (ii) determine the termination



TABLE II. STATE PROPAGATION FOR AN OCCURRENCE e OF A COMPOSITE GOAL EXPRESSION E , STARTING FROM ITS SUBEXPRESSIONS

Rule e.event E = E1;E2 E = E1#E2 E = E1|E2 E = (E1)
+ E = (E1)

#

R1 succ The trace [. . . , event] is a final string in the language defined by the expression
R2 fail The trace [. . . , event] is not recognized by the language defined by the expression

R3 start e1.start e1.start or e2.start e1.start or
e2.start e1.start e1.start

R4 susp
e1.susp or e2.susp
or e1.succ

([not running?(e2)] e1.susp or
e1.succ) or ([not running?(e1)]
e2.susp or e2.succ)

e1.susp or
e2.susp

e1.susp or
e1.succ

[|j. not running?(e1-j)| = 1]
e1-i.susp or e1-i.succ

R5 resm
e1.resm or
e2.resm or
e2.start

e1.resm or e1.start or e2.resm
or e2.start

e1.resm or
e2.resm

e1.resm or
e1.start e1.resm or e1.start

of constructs that involve multiple instances (E+ and E#),
i.e., if more occurrences are expected or not.

In the following, Algorithms 2–5 have as implicit param-
eters the RGM rgm, the RGI rgi, and the task trace τ .

RGI monitoring loop (Algorithm 1). This algorithm is
launched when the system is deployed, and it coordinates the
interpretation of retrieved events (lines 3–4) in terms of an
RGI. The algorithm terminates when the root goal of the RGI is
in a final state (succeeded or failed). After adding the retrieved
event ev to the trace (line 5), it checks if ev is valid (i.e., if
it updates a task instance in accordance with the transition
diagram in Figure 3). If the trace is invalid, a notification is
sent (either to the analyst or to the system itself), and the event
is ignored (lines 7–8). Notice that one may define an alternative
monitoring loop that throws an exception and terminates.
Choosing on how to react to unexpected inputs depends on
domain-specific factors. If the trace is valid (line 9), the latest
event is processed by PROCESSEVENT (Algorithm 2).

Algorithm 1 Requirements monitoring loop
REQMONITORLOOP(RGM rgm)
1 RGI rgi← ∅
2 TaskTrace τ ← 〈 〉
3 while state(GETROOT(rgi)) /∈ {succeeded, failed}
4 do Event ev = (id,G, act)← WAITNEXTEVENT()
5 τ ← τaev
6 if not ISEVENTVALID(id, act, rgi)
7 then NOTIFY(invalid event, τ, rgi, ev)
8 continue
9 PROCESSEVENT(ev)

Preliminary event processing (Algorithm 2). This makes
a preliminary analysis of an event, then redirects further anal-
ysis to other algorithms. Each event consists of the task/goal
instance identifier (id), the type of the instance (G), and
the occurred action (act). If a corresponding goal instance
g already exists in the RGI (line 1–2), state(g) is updated.
Then, the event is checked against the temporal constraints
expressed in the RGM (line 3). The event is propagated to the
parent (lines 4–6) by calling PROPAGUP (Algorithm 4). Line 5
handles root goals, which require no further up-propagation. If
no corresponding goal instance exists in the RGI, BUILDTREE
(Algorithm 3) creates a goal instance with identifier id, and
adds the ancestors in the tree, if needed.

Bottom-up propagation rules (Table II). Our algorithms
construct an RGI in a bottom-up fashion. The events in the task
trace define the task instances in the RGI. Then, these events

Algorithm 2 Processing a goal event
PROCESSEVENT(Event ev = (id,G, act))
1 if ∃g ∈ rgi. type(g) = G ∧ id(g) = id
2 then state(g)← GETTRANSITIONTARGET(act)
3 CHECKTEMPCONSTRS(ev)
4 parent← GETPARENTINST(g, rgi)
5 if parent = NIL then return
6 PROPAGUP(gev, parent)
7 else GoalInst gi← NEWGOALINST(id,G, ∅, running, 〈 〉)
8 BUILDTREE(gi)

affect other goal instances, following the path from leafs to
root in the RGM. The propagation rules define when and how
an event that affects a component of a composite expression
affects an instance e of the composite expression. Our algo-
rithms start from a valid chnTrace(), and determine how the
latest event in the trace affects the composite expression. The
rules are formalized in Table II, are briefly explained below,
and are illustrated in Section V:

R1. e.succ if the trace is a final string in L(E);

R2. e.fail if the trace is not an initial substring in L(E);

R3. e.start as soon as a subexpression instance starts;

R4. e.susp when there is no running subexpression in-
stance; either they are all waiting, or one instance is
succeeded, and the following has not started yet;

R5. e.resm when a a component of the subexpression is
resumed or started (if all components are terminated,
but the expression is not completed yet).

Constructing an RGI (Algorithm 3). This constructs an
RGI tree from a goal instance g: it adds g (line 1) and its
ancestors to the RGI, until it finds an existing ancestor or
it reaches a root goal. The algorithm looks up the parent
goal class in the RGM (line 3). If such class does not exist,
the algorithm has encountered the root (line 4), it checks
temporal constraints on event g.start , and returns. Otherwise,
the algorithm looks for the parent of g in the RGI (line 7).
If this parent g-par exists, g is added as a child of g-par
(line 9), and the event g.start is propagated bottom-up by
Algorithm 4 (line 10). If the RGI contains no parent for g, a
goal instance for the parent is created, by generating a unique
identifier, specifying g as a child, and g.start as children trace
(line 11–13). Then, BUILDTREE is recursively called on such
parent (line 14). If an instance of G′ cannot start with g (R3 in
Table II is evaluated on annot(G′)), then PROCESSEVENT is



Algorithm 3 Constructing an RGI tree
BUILDTREE(GoalInst g)

1 rgi← rgi ∪ {g}
2 Event ev← (id(g), type(g), start)
3 G’← GETPARENTCLASS(G, rgm)
4 if G’ = NIL
5 then CHECKTEMPCONSTRS(ev)
6 return
7 GoalInst g-par← GETPARENTINST(g, rgi)
8 if g-par 6= NIL
9 then children(g-par)← children(g-par)ag

10 PROPAGUP(ev, g-par)
11 else id’← GENIDFORPARENT(g, G′)
12 GoalInst gi← NEWGOALINST(id’,G’, 〈 g 〉,
13 running, 〈 ev 〉)
14 BUILDTREE(gi)
15 if not CANSTARTWITH(annot(G′), ev) // Rule R3

16 then PROCESSEVENT((id’,G’, fail))
17 CHECKTEMPCONSTRS(ev)

called on a failure event for id’ (lines 15–16). Lastly, temporal
constraint are checked (line 17).

Bottom-up event propagation (Algorithm 4). This enacts
the propagation rules R1–R5 in Table II, by evaluating if the
latest event added to chnTrace(g) affects the goal instance
g. First, the children trace is updated by adding the event.
Then, if g was already in a final state, the algorithm returns
(line 2). Otherwise, the rules of Table II are verified (lines 5–
16). The rules for success and failure are examined first, then
those for suspension and resume. The rule for start is used
by Algorithm 3, which creates goal instances in state running.
If no rule is applicable, the state of g is not affected (line
17). Otherwise, the proper event to reach the new state of g is
processed (lines 18–19).

Algorithm 4 Bottom-up propagation of an event
PROPAGUP(Event ev, GoalInst g)

1 chnTrace(g)← chnTrace(g)aev
2 if state(g) ∈ {succeeded, failed} then return
3 State newState← NIL
4 Annotation ann-g← annot(type(g))
5 if ISFINALSTRINGOF(chnTrace(g), ann-g)
6 then newState← succeeded // Rule R1

7 else if NOTINITSTRINGOF(chnTrace(g), ann-g)
8 then newState← failed // Rule R2

9 if newState = NIL
10 then switch state(g)
11 case running :
12 if CANSUSP(state(g), chnTrace(g), ann-g)
13 then newState← waiting // Rule R4

14 case waiting :
15 if CANRESM(state(g), chnTrace(g), ann-g)
16 then newState← running // Rule R5

17 if newState = NIL then return
18 Event ev’← GETEVENTBETWEEN(state(g), newState)
19 PROCESSEVENT(ev’)

Verifying temporal constraints (Algorithm 5). This
checks if an occurred event violates any of the temporal
constraints defined in the RGM, and it notifies all detected
violations. For each temporal constraint tc in the RGM (line
3), the algorithm determines the lowest common ancestor lca-
c, and gets the instance of lca-c that is an ancestor of g in

the RGI (lines 4–5). If tc is of type requires (lines 7–10), and
the processed event concerns a goal/task instance whose type
matches the first argument of tc, then the algorithm verifies
that there are no instances of the second argument class in the
subtree rooted in lca-i. A similar process applies for prevents
constraints (lines 11–14). Finally, violations for constraints are
notified (line 15).

Algorithm 5 Checking temporal constraints
CHECKTEMPCONSTRS(Event ev = (id,G, act))

1 TempConstraint { } constrs← GETTEMPCONSTRAINTS(rgm)
2 ConstrViolation { } viol← ∅
3 for each tc = (type, arg1, arg2) ∈ constrs
4 do GoalClass lca-c← LOWESTCOMMANC(arg1, arg2)
5 GoalInst lca-i← GETANCESTOROFTYPE(G, lca-c)
6 switch type
7 case requires :
8 if G 6= arg1 then continue
9 if ∅ = GETISTANCESINSUBTREE(arg2, lca-i)

10 then viol← viol ∪ (tc, ∅,G)
11 case prevents :
12 if G 6= arg2 then continue
13 if arg1-i← GETISTANCESINSUBTREE(arg1, lca-i)
14 then viol← viol ∪ (tc, arg1-i,G)
15 for each v ∈ viol do NOTIFY(constr viol, τ, rgi, ev, v)

V. EVALUATION THROUGH SCENARIOS

We illustrate our algorithms through incremental scenarios
of a running meeting scheduler whose RGM is that in Figure 4.
We summarize each scenario, then describe how the algorithms
from Section IV-B are applied to update the RGI as the task
trace τ unfolds. To keep our illustrations readable, we focus
on the RGM subtree rooted in G2.

Scenario 1 (Start). From trace τ1 = 〈 g18-1.start 〉, a task
instance of class G18 (Mail sent) is created, indicating that the
system has started sending an e-mail. Since the RGI is initially
empty, this event cascades up, leading to the RGI rooted in
g2-1 in Figure 5. All task/goal instances in RGI are in state
running. �

g11-1.start

g6-1.start

running

running

running

running

ev1

g2-1

g6-1

g11-1

g18-1 Trace ev1:g18-1.start

Fig. 5. RGI for the RGM of Figure 4 for the task trace τ1. Each node is
labeled with identifier and type (g1-2 indicates instance 2 of goal class G1),
and it is annotated with the current state (underlined, in italic) and the children
trace (between angular brackets 〈 〉)

We explain how our algorithms process τ1 to obtain the
RGI in Figure 5. Algorithm 1 retrieves event ev1 (line 4)
and adds it to τ . The event is valid, and is thus processed by
Algorithm 2. There is no node for g18-1 in rgi, so BUILDTREE
is called. Algorithm 3 adds g18-1 to rgi in state running. Since
there is no parent for g18-1 in rgi, a goal instance g11-1 is



created in state running, with g18-1 as a child, and with children
trace 〈 g18-1.start 〉, and Algorithm 3 is recursively invoked on
g11-1. This process is repeated till the root goal g2-1 is created.
All goal instances are set in state running by Algorithm 3, line
12. None of the start events violates temporal constraints.

Scenario 2 (Failure). From trace τ2, a second instance of
G18 (g18-2) starts (a new e-mail is being sent), and fails.
This failure implies a failure in g11-1 too, while g6-1 is still
in state running, since the RGM supports other alternatives
for collecting timetables. The root goal g2-1 remains in state
running too. This scenario is depicted in Figure 6. �

ev1,ev2,ev3

g6-1.start

running

failed

running

running
g2-1

g6-1

g11-1

g18-1

g11-1.start, g11-1.fail

g18-2
failed

Trace ev1, ev2:g18-2.start, ev3:g18-2.fail

Fig. 6. RGI for the RGM of Figure 4 for the task trace τ2

Algorithm 1 processes event ev2 in τ2. The processing of
ev2 leads to the creation of a node g18-2 in rgi. This time,
however, algorithm BUILDTREE (called by PROCESSEVENT)
finds a parent goal instance for g18-2 in rgi: g11-1. Therefore,
g18-2 is added to children(g11-1), and PROPAGUP is called to
propagate the state of g18-2 to g11-1. The state of g11-1 (and
of its ancestors) is unaffected by ev2.

Event ev3 leads to an update of the already existing task
instance state(g18-2) through PROCESSEVENT. PROPAGUP is
called on g18-2.fail ; chnTrace(g11-1) is 〈 ev1, ev2, ev3 〉, which
is not an initial substring of annot(G11)= (G18; opt(G19))

#.
Thus, g11-1 switches to state failed. The parent g6-1 is not
affected, because annot(G6)= (try(G11) ? skip : G10) | G12

supports the failure of instances of G11 through the try
annotation. An instance of G10 is now expected.

Scenario 3 (Alternative). From trace τ3, the system uses
an alternative function and successfully calls participants
(ev4, ev5). In turn, this leads state(g6-1) to succeeded. The
corresponding RGI is depicted in Figure 7. �
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Trace ev1, ev2, ev3, ev4:g10-1.start, ev5:g10-1.succ

Fig. 7. RGI for the RGM of Figure 4 for the task trace τ3

Let us skip the processing of ev4, which is anal-
ogous to ev2. The success of g10-1 (ev5), instead,
leads to chnTrace(g6-1) as in Figure 7. This is recog-
nized by Algorithm 4 as a final string for annot(G6)=
(try(G11) ? skip : G10) | G12. Thus, event g6-1.succ leads
to state(g6-1)=succeeded. PROPAGUP is called on the parent
g2-1. The state of g2-1 is not affected, because annot(G2)=
G6; (G7#G8) requires the interleaved execution of G7 and G8

to be completed.

Scenario 4 (Suspension). From trace τ , events ev6 and ev7
indicate that a manual meeting scheduling (g13-1) starts and
is suspended. ev7 affects all ancestors of g13-1, as the only
active task in the system was g13-1. See Figure 8. �
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Fig. 8. RGI for the RGM of Figure 4 for the task trace τ4

Event ev6 leads to the creation of a node for g13-1 (Algo-
rithm 2 processes the event and calls BUILDTREE). In turn,
BUILDTREE generates a node for g7-1, and links it to the root
g2-1. Event ev7 suspends g13-1. Then, PROPAGUP propagates
the event suspension to produce the state waiting till the root.
Indeed, annot(G2)= G6; (G7#G8), an instance of G6 has
terminated successfully, and, so far, the interleaving of G7 and
G8 has only one instance (g7-1), which has been suspended.

Analyzing an RGI. We can now answer Q1 by simply
looking at the state of an RGI’s root (failed means that the trace
violates the specification). In our scenarios, the trace complies
with the specification. We can answer Q2 by investigating
the state of subgoals (e.g., state(g11-1) is failed). Answering
Q3—is there an alternative behavior?—requires checking if
the failure of a task instance leads the root goal instance to
state failed (in that case, there is no possible alternative). In
our scenarios, the failure of g18-2 did not result in the failure
of the root, as an alternative task was executed to achieve g6-1.
The framework needs extensions to answer more sophisticated
questions, including Q4 and Q5.

Proof-of-concept. We have implemented a Prolog program
that determines if a trace is recognized by an annotation. This
implementation is essentially an extended regular expression
recognizer that supports our annotation language. Recognition
is a key building block of our proposal. The implementation
has helped us to refine our goal annotations and to understand
the subtleties of constructing RGIs from traces. This imple-
mentation is a first step towards the creation of a full-fledged
framework for creating, updating, and querying RGIs.



VI. RELATED WORK

We review some approaches that use goal models at
runtime for monitoring or planning/guiding system behavior
as well as methods to reason about enriched goal models.

Operational goals in KAOS can be used for runtime
requirements monitoring [23]. Cheng et al. [24] propose a
method to introduce requirements about adaption into KAOS
goal models [14] using threat analysis to identify those goals
that should be mitigated by introducing adaptive functions.
Fuzzy goals [25] go beyond KAOS’s crisp goals, tolerating
small deviations (e.g., small delays in deadlines). While these
approaches are useful at design-time for eliciting and specify-
ing requirements about adaptation, the resulting artifacts do not
explicitly refer to stateful goal instances that can be monitored
from system traces.

Different authors [26], [27] suggest using i* goal models
to support the design of high-variability systems. The system
chooses among existing options by evaluating the strategy
that provides the best contribution to softgoals. Welsh et al.
[9] also include the notion of claim (taken from the NFR
framework [28]) to represent the assumptions that modelers
makes when indicating the strength of a contribution from a
task or hardgoal to a softgoal. These claims are monitored
at runtime and, if proven false, they can be reconsidered
(e.g., the contribution may be removed or its strength may be
inverted). Assumptions in requirements models have also been
studied by Ali et al. [29]. These works choose an adequate
level of abstraction (goals) for modeling adaptive systems.
However, they fail to distinguish between goal classes from
goal instances, and provide no foundations for dealing with
goal instances as stateful entities.

Awareness requirements [30] are requirements about the
state of other requirements. They have been proposed for
designing adaptive systems that fulfill requirements such as
“Requirement R must never fail three times in a row”. Aware-
ness requirements do use runtime goal models, but thus far
have only considered single isomorphic instances of DGMs.
Such an approach can benefit from our proposal.

Morandini et al. [10] show how detailed-design goal mod-
els can be mapped to rational agent programming languages. In
subsequent work [17], they investigate the life-cycle of goals
at runtime. Our annotation language resembles the expressions
in [12], which support mapping goal models to agent specifi-
cations in ConGolog. However, they do not consider stateful
goals. We have been inspired by these approaches, but go be-
yond by proposing a method to derive RGMs from high-level
DGMs, and runtime mechanisms that combine annotations and
state inference.

DeLoach and Miller [31] differentiate between goal classes
and instances for adaptive systems, and they rightly observe
that instances have an associated state. Similar observations
arose in our previous work [32], [33], [18], where we implicitly
differentiated between classes and instances by using paramet-
ric goals (different instances differ in the actual values assigned
to the parameters). In this paper we go beyond by providing
an annotation language for expressing how goal instances shall
be interleaved, also introduce RGI artifacts that represent the
behavior of the system in terms of its requirements.

Artificial Intelligence planners have been used to find
satisfactory system behavior during design-time. Liaskos et
al. [13] enrich goal models with precedence annotation and
preferences, determining the most suitable behavior based
on this. Sykes et al. [34] map goals to components, and
combine the actions that these components can do via planners.
Although DGMs are enriched with behavioral information,
such extensions are not as expressive as our annotations
in Section III-B. Moreover, these approaches are aimed at
ensuring system design allows for plans which sufficiently
achieve goals and preferences, and are not aimed for runtime
monitoring or analysis.

In Section II, we have shown how our problem differs from
design-time reasoning on DGMs [16], [21], which works at the
class level and takes a set of goals as input, as opposed to a
sequential trace of events. Other approaches perform reasoning
on DGMs extended with behavioral information. KAOS goal
models use temporal logics to describe behavior. They have
been mapped to labeled transition systems [35], [36] to support
consistency checking, identification of implicit requirements,
and animation. A different approach enriches goal models with
scenarios, to obtain verifiable modal transition systems [37].
However, the focus of these approaches is mainly on formal
verification, as opposed to constructing a runtime requirements
object that supports questions such as Q1.

VII. DISCUSSION AND OUTLOOK

We have proposed a modeling language for runtime goal
models, to be used for monitoring and diagnosis of adaptive
software systems. Our proposal introduces supports goal mod-
els at a class and instance level, also associates state, behavioral
and historical information to goal instances. It also supports
reasoning about the state and behavior of a system relative to
its requirements.

For the future, our proof-of-concept implementation needs
to be supplemented with a more robust and comprehensive
version that can be evaluated for scalability. We also plan to
revisit earlier work that uses runtime goal models (e.g., [5],
[30], [18]) and revise algorithms for monitoring and diagnosis
based on the results presented herein. Another interesting
future direction for this research concerns the inclusion of
contexts in RGMs, based on our previous work with contextual
goal models for adaptive systems [33], [38].
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